
计算机视觉
文章平均质量分 70
YvonneOreo
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
3D重构基础三--内部参数
在上一节中,我们用矩阵描述了外部参数,即物体的坐标到相机坐标的变换。同时还分析了透视投影,即成像的过程,整个过程就是从(U,V,W)->(X,Y,X)->(x,y)。这一节主要讨论如何从像平面(x,y)变换到数字图像(u,v),即从像平面(Film Coords)到像素(Pixel Coords)。对一幅数字图像,我们可以改变它的宽高比,即作尺度变换。原创 2014-11-10 16:01:57 · 2064 阅读 · 0 评论 -
摄像机标定(附源码)
今天介绍图和标定camera。首先是用到的opencv函数。后面附上源码。FindChessboardCorners 寻找棋盘图的内角点位置 int cvFindChessboardCorners( const void*image, CvSize pattern_size,CvPoint2D32f* corners,int* corner_count=NULL,int原创 2014-12-01 20:08:54 · 3143 阅读 · 0 评论 -
总结(一) 知识点初步理解
最近看了些立体视觉方面的资料,感觉立体视觉涉及到的东西太多,且数学理论比较强,特别是几何方面的东西,下面是对这一周看关于立体视觉方面的资料的初步总结,很多知识也是懂了个概念而已,深入的话要在以后的实践过程中不断体会,其中主要是一些名词,写下来算是对自己有个小的总结:一. 射影几何知识。 包括平面射影几何和空间射影几何。射影几何只是在欧式几何中引入了无穷远元素而已,比如说无原创 2014-11-20 12:59:06 · 1358 阅读 · 0 评论 -
3D重建的干货
前几章看的脑洞太大,这节来点干货。:)原创 2014-11-18 14:56:15 · 1114 阅读 · 0 评论 -
3D重构基础七--structure and motion
这里,structure=structure of the scene; motion = motion of camera.原创 2014-11-17 20:09:46 · 1074 阅读 · 0 评论 -
[总结]Camera model and multiple view geometry
总结一下:一、实际点到image点映射关系为:化简后为:其中,C为主点(principal point),一般是图像中心。s请看图3.3右,一般为0.最后,我们写成这种形式:===================================================二、相机运动(motion of camera)相机运动原创 2014-11-14 18:23:58 · 1083 阅读 · 0 评论 -
3D重构基础六--RANSAC
参考资料:http://en.wikipedia.org/wiki/ransac原创 2014-11-12 18:18:22 · 1359 阅读 · 0 评论 -
3D重构基础四--Planar Homography & Epipolar Geometry
上一篇,只要主要搞清楚透视的坐标变换。这一篇,原创 2014-11-10 16:09:32 · 19643 阅读 · 0 评论 -
3D重构基础五--Essential and Fundamental matrices
Part 1 本质矩阵本质矩阵与相机的外部参数有关,先看其定义。原创 2014-11-12 09:58:20 · 1684 阅读 · 1 评论 -
[补充二]基于多幅图像的3D重构
原文地址:http://blog.csdn.net/connor_lele/article/details/24603841转载 2014-11-13 09:54:07 · 5358 阅读 · 0 评论 -
3D重构基础二--坐标转换
借助几何和代数的方法来描述立体感知。先从简单的情况开始......假设两个相机的内部参数一致,如焦距、镜头等等,为了数学描述的方便,需引入坐标,由于坐标是人为引入的,因此客观世界中的事物可以处于不同的坐标系中。假设两个相机的X轴方向一致,像平面重叠,如下图所示,坐标系以左相机为准,右相机相对于左相机是简单的平移,用坐标表示为(Tx,0,0)Tx一般称为基线(base原创 2014-11-10 15:39:52 · 2823 阅读 · 0 评论 -
3D重构基础一
资料来源:3D reconstruction from multiple images (Theo Moons,Maarten Vergauwen, Luc Van Gool)一、Stereo Vision深度信息感知是人类产生立体视觉的前提。生理过程一定是相当复杂,此处,我们只从物理角度,并采用数学的方法来讨论。Inferring depth from image原创 2014-11-10 15:38:20 · 3115 阅读 · 1 评论 -
鸟瞰图(附源码)
opencv自带的鸟瞰图略坑,先看一下,稍后研究一下其他的论文,再实现对比一下效果。#include #include #include #include #include using namespace std;void help(){ printf("Birds eye view\n\n" " ADJUST VIEW HEIGHT using keys 'u' u原创 2014-12-03 17:45:06 · 4587 阅读 · 1 评论