项目概述
推客小程序是一款基于微信生态的社交电商平台,通过分享裂变模式帮助商家快速拓客,同时让用户通过分享获得收益。系统采用前后端分离架构,包含商品管理、订单处理、佣金结算、用户裂变等核心功能模块。
技术架构
-
前端:微信小程序原生开发 + Taro多端框架
-
后端:Spring Boot + MySQL + Redis
-
部署:Docker容器化 + Nginx负载均衡
-
安全:JWT认证 + 数据加密传输
核心功能实现
1. 多级分销体系
java
// 佣金计算核心逻辑 public void calculateCommission(Order order) { // 一级推荐人获得订单金额的10% User level1 = userService.getRecommender(order.getUserId()); if(level1 != null) { commissionService.addCommission(level1, order, 0.1); // 二级推荐人获得5% User level2 = userService.getRecommender(level1.getId()); if(level2 != null) { commissionService.addCommission(level2, order, 0.05); } } }
2. 微信支付集成
javascript
// 小程序端支付调用 wx.requestPayment({ timeStamp: timestamp, nonceStr: noncestr, package: prepay_id, signType: 'MD5', paySign: sign, success(res) { // 支付成功处理 }, fail(res) { // 支付失败处理 } })
3. 高性能订单处理
采用Redis队列处理高并发订单:
python
# 订单队列消费者 def order_consumer(): while True: order_data = redis.rpop('order_queue') if order_data: try: order_service.process_order(order_data) except Exception as e: redis.lpush('order_fail_queue', order_data)
项目亮点
-
裂变式增长:通过分享得佣金机制实现用户自发传播
-
高性能架构:QPS可达5000+,支持百万级用户
-
智能风控:基于用户行为的反作弊系统
-
数据分析:完善的用户行为追踪和转化分析
开发心得
在开发推客小程序过程中,我们遇到了几个关键挑战:
-
佣金结算的精确性和实时性平衡
-
高并发场景下的数据一致性
-
微信生态的合规性要求
通过引入分布式事务和最终一致性方案,我们成功解决了佣金结算的准确性问题。采用读写分离和缓存策略应对高并发挑战。
未来规划
-
接入更多电商平台商品库
-
开发短视频带货功能
-
引入AI推荐算法提升转化率