机器学习之GPU-paddle框架搭建之在conda虚拟环境安装CUDA和CUDNN以及在pycharm中验证paddle是否可运行

搭建paddle框架需要安装CUDA和CUDNN

通常,在本地安装与显卡对应的cuda和cudnn,这样才可以用显卡进行训练。

但不同的项目所需框架所支持的CUDA版本是不一样的,而框架和CUDA版本之间又是互相依赖的,所以如果可以灵活地在不同cuda版本间切换将是非常方便的。anaconda就可以实现这个功能。所以可在conda创建的不同虚拟环境中安装不同的cuda和cudnn版本,以此来实现不同cuda版本间的切换。

创建虚拟环境

创建所需新conda环境(此处或许需要科学上网):

conda create -n paddle python=3.9

选择安装与否  y or n,输入y,继续,等待直至新环境创建成功。

输入命令,切换环境命令:

conda activate paddle

进入到paddle虚拟环境中。

安装CUDA

CUDA和CUDNN都有两种下载安装方式:一是直接从网上下载安装,二是先将压缩包下载至本地,再通过命令输入本地路径进行本地安装。

CUDA的安装使用方法一。

首先查询源内所有的cuda 版本,以及下载地址:

conda search cudatoolkit --info

选择其中适合自己CUDA版本的套件,输入指令安装:

(查询CUDA版本方法:wins+R打开cmd,输入 nvcc --version

(注意安装的套件要低于自己的CUDA版本)我的CUDA是12.1,安装11.8版本

conda install cuda -c nvidia/label/cuda-11.8
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值