搭建paddle框架需要安装CUDA和CUDNN
通常,在本地安装与显卡对应的cuda和cudnn,这样才可以用显卡进行训练。
但不同的项目所需框架所支持的CUDA版本是不一样的,而框架和CUDA版本之间又是互相依赖的,所以如果可以灵活地在不同cuda版本间切换将是非常方便的。anaconda就可以实现这个功能。所以可在conda创建的不同虚拟环境中安装不同的cuda和cudnn版本,以此来实现不同cuda版本间的切换。
创建虚拟环境
创建所需新conda环境(此处或许需要科学上网):
conda create -n paddle python=3.9
选择安装与否 y or n,输入y,继续,等待直至新环境创建成功。
输入命令,切换环境命令:
conda activate paddle
进入到paddle虚拟环境中。
安装CUDA
CUDA和CUDNN都有两种下载安装方式:一是直接从网上下载安装,二是先将压缩包下载至本地,再通过命令输入本地路径进行本地安装。
CUDA的安装使用方法一。
首先查询源内所有的cuda 版本,以及下载地址:
conda search cudatoolkit --info
选择其中适合自己CUDA版本的套件,输入指令安装:
(查询CUDA版本方法:wins+R打开cmd,输入 nvcc --version
)
(注意安装的套件要低于自己的CUDA版本)我的CUDA是12.1,安装11.8版本
conda install cuda -c nvidia/label/cuda-11.8