Generative Adversarial Nets论文阅读笔记

先附上本人使用pytorch实现的GAN:

https://github.com/1991yuyang/GAN

如果觉得有用大家可以给个star。

这篇博客用于记录Generative Adversarial Nets这篇论文的阅读与理解。对于这篇论文,第一感觉就是数学推导很多,于是下载了一些其他有关GAN的论文,发现GAN系列的论文的一大特点就是基本都是数学推导,因此,第一眼看上去还是比较抵触的,不过还是硬着头皮看了下来。

废话不多说,下面就介绍GAN的基本原理。

一.摘要

摘要部分主要说明了,作者通过一个对抗训练过程来估计生成模型,其过程如下:首先需要建立一个生成模型G用于捕捉数据分布,其次还需要建立一个判别模型D用于给出一个样本是来自于真实样本而非生成器G生成的假样本的概率。而作为生成器,希望其生成的假样本越逼真越好,因此其训练目标就是使得判别器D犯错误的概率越大越好,也就是将G生成的样本大概率的判别为真样本。对于所有的G和D,存在唯一解,G的唯一解能够回复真实数据的分布;而D的唯一解就是不能够判别样本是真实样本还是生成器G生成的样本,即给出的概率为0.5。

以上这个过程类似于假画作者和鉴宝专家,假画作者一开始画工拙劣,其画作难以骗过鉴宝专家。于是假画作者便提升自己的画功,随后能够成功骗过鉴宝专家,而鉴宝专家随后也提升了自身的鉴宝能力,便又能够识破假画作者的画作。如此循环往复,最后假画作者便可以创作出一幅足够真的假画。假画作者就是生成器G,而鉴宝专家就是判别器D。

二.对抗网络

如上图所示,通过为生成器输入符合某种先验分布p_z的随机噪音z,生成器产生出假的图片,将假图片和真图片同时输入至判别器,判别器针对每个样本输出0或1,如果输出1则表示对应样本为真实数据采样得到,如果输出0则表示为生成器生成的假样本。这里我们使用p_g表示生成器生成的样本空间分布,使用p_{data}表示真实样本分布。对于生成器G的训练目标是使得p_g尽可能的接近p_{data},即最小化log(1-D(G(z))),这是因为我们希望生成器生成的样本足够逼真骗过判别器,其中G(z)是输入随机噪音z生成器G生成的服从分布p_{g}的假图片,如果能够骗过判别器,则D(G(z))便会输出1,此时(1-D(G(z)))为0,而log(1-D(G(z)))则为负无穷。而判别器D的训练目标是能够准确区分真实样本和生成的假样本,实际上就是最大化log(D(x))+log(1-D(G(z))),这是因为,当判别器能够正确区分真样本和假样本时,D(x)会输出1,其中x是来自于真实样本分布的样本,而D(G(z))会输出0,此时表达式能够达到最大值0。通过数学表达式表示训练目标如下所示:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值