基于粒子群算法的参数辨识研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

💥1 概述

粒子群算法是一种基于群体智能的优化算法,它模拟了鸟类或鱼类等群体的行为,通过不断地搜索和学习来优化问题的解。在参数辨识问题中,粒子群算法可以用来寻找最优参数组合,从而得到最优的模型。

具体来说,粒子群算法通过不断地更新每个粒子的速度和位置来搜索最优解。每个粒子代表一个参数组合,其速度和位置分别对应参数的变化率和当前取值。在搜索过程中,每个粒子会根据自身历史最优解和全局最优解来更新速度和位置,从而逐步逼近最优解。

在参数辨识中,粒子群算法可以通过以下步骤来实现:

1. 确定参数范围和目标函数:确定需要辨识的参数范围和目标函数,即模型的误差函数。

2. 初始化粒子群:随机生成一定数量的粒子,并为每个粒子随机分配速度和位置。

3. 计算适应度函数:根据当前粒子的参数组合计算模型的误差函数,并将其作为适应度函数的值。

4. 更新全局最优解:将当前最优解与全局最优解进行比较,如果当前最优解更优,则更新全局最优解。

5. 更新粒子速度和位置:根据当前粒子的历史最优解和全局最优解,更新其速度和位置。

6. 重复步骤3-5,直到达到预设的停止条件。

通过粒子群算法,可以得到最优的参数组合,从而得到最优的模型。此外,粒子群算法还具有收敛速度快、易于实现等优点,因此在参数辨识问题中得到了广泛的应用。

利用粒子群算法辨识非线性静态模型参数:

 

式中,N为测试数据的数量,yi为模型第i个测试样本的输出。

基于粒子群算法的参数辨识研究

一、引言

粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,由Kennedy和Eberhart于1995年提出。该算法模拟鸟群或鱼群在觅食过程中的行为,通过个体间的协作和信息共享来寻找最优解。PSO算法因其结构简单、收敛速度快、易于实现等优点,在参数辨识领域得到了广泛应用。

二、粒子群算法基本原理
  1. 粒子表示:在PSO算法中,每个粒子代表搜索空间中的一个潜在解,具有位置和速度两个属性。位置表示解的取值,速度表示解的变化率。

  2. 适应度函数:根据问题的具体需求,定义适应度函数来评估每个粒子的优劣。适应度函数值越小,表示解的质量越高。

  3. 更新规则:粒子在搜索过程中,根据自身历史最优解和群体历史最优解来更新速度和位置。具体更新公式如下:

    • 速度更新:vid​(t+1)=w⋅vid​(t)+c1​⋅r1​⋅(pid​−xid​(t))+c2​⋅r2​⋅(pgd​−xid​(t))
    • 位置更新:xid​(t+1)=xid​(t)+vid​(t+1)

    其中,vid​(t)表示第i个粒子在第d维上的速度;xid​(t)表示第i个粒子在第d维上的位置;w为惯性权重,控制粒子速度的继承程度;c1​和c2​为学习因子,分别调节粒子向自身历史最优解和群体历史最优解移动的步长;r1​和r2​为随机数,取值范围在[0,1]之间;pid​表示第i个粒子的历史最优解在第d维上的取值;pgd​表示群体历史最优解在第d维上的取值。

三、粒子群算法在参数辨识中的应用
  1. 参数辨识问题描述:参数辨识是指根据系统的输入输出数据,通过优化算法寻找模型中的未知参数,使得模型输出与实际输出之间的误差最小。

  2. 基于PSO的参数辨识步骤

    • 确定参数范围和目标函数(适应度函数):根据问题的具体需求,确定需要辨识的参数范围和目标函数。目标函数通常定义为模型输出与实际输出之间的误差函数。
    • 初始化粒子群:随机生成一定数量的粒子,并为每个粒子随机分配速度和位置。
    • 计算适应度函数:根据当前粒子的参数组合计算模型的误差函数,并将其作为适应度函数的值。
    • 更新全局最优解:将当前最优解与全局最优解进行比较,如果当前最优解更优,则更新全局最优解。
    • 更新粒子速度和位置:根据当前粒子的历史最优解和全局最优解,更新其速度和位置。
    • 迭代优化:重复上述步骤,直到满足停止准则(如达到最大迭代次数或误差小于预设阈值)。
  3. 改进策略:针对标准PSO算法易陷入局部最优的问题,研究者提出了多种改进策略,如引入进化策略、动态调整惯性权重、采用分阶段搜索等。这些改进策略有助于提高算法的全局搜索能力和收敛速度。

四、研究案例与分析
  1. 船舶运动参数辨识:在船舶运动控制领域,建立船舶运动数学模型对于研究闭环系统性能和设计船舶运动控制器具有重要意义。通过PSO算法对船舶纵向和横向运动参数进行辨识,结果表明,改进后的PSO算法能够准确、快速地辨识出船舶运动参数,为船舶运动控制提供了有效支持。
  2. 船舶推进电机参数辨识:针对船舶异步推进电机参数在线辨识的需求,研究者提出了一种基于自适应PSO算法的参数辨识方法。该方法通过引入进化速度因子和聚集度因子,提高了算法的收敛精度和快速性。仿真试验结果表明,自适应PSO算法在收敛精度和快速性上均优于几种现有算法,实现了电气参数的高精度同时在线辨识。
  3. 电力负荷模型参数辨识:在电力系统负荷模型参数辨识中,PSO算法也表现出色。研究者针对线性递减惯性权重和收缩因子PSO算法存在的“早熟”和遍历性不足的问题,提出了一种基于S型惯性权重的变异PSO算法。通过多个标准测试函数对改进算法进行综合测试,验证了该算法具有收敛速度快和搜索精度高的优点,适用于负荷模型的参数辨识。
五、结论与展望
  1. 研究结论:基于粒子群算法的参数辨识方法在多个领域得到了广泛应用,并取得了显著成果。通过不断改进算法性能和提高收敛速度,PSO算法在参数辨识中展现出强大的潜力和优势。
  2. 未来展望:随着智能优化算法的不断发展,未来可以进一步探索PSO算法与其他优化算法的融合应用,以提高参数辨识的精度和效率。同时,针对具体应用场景的需求,可以设计更加高效的PSO算法变体,以适应不同领域的参数辨识需求。

📚2 运行结果

2.1 迭代图

2.2 运行结果

子函数代码:


function J=obj(X,y,N)%********计算个体目标函数值
  gp=X(1);
  hp=X(2);
  k1p=X(3);
  k2p=X(4);

  xmin=-4;
  xmax=4;
  
for i=1:1:N
    x(i)=xmin+(i-1)*0.10;
    x_abs=abs(x(i));
    if x_abs<=gp
       yp(i)=0;
    elseif x_abs>gp&&x_abs<=hp
       yp(i)=k1p*(x(i)-gp*sign(x(i)));
    elseif x_abs>=hp
       yp(i)=k2p*(x(i)-hp*sign(x(i)))+k1p*(hp-gp)*sign(x(i));
    end
end

E=yp-y;
J=0;
    for i=1:1:N
        J=J+0.5*E(i)*E(i);
    end
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]娄天浩. 基于改进粒子群算法参数辨识的车用无刷直流电机控制技术研究[D].浙江大学,2022.DOI:10.27461/d.cnki.gzjdx.2022.000075.

[2]宋莉莉,刘婷,陈莉.基于粒子群算法的火电单元机组模型参数辨识[J].电子技术与软件工程,2021(11):198-200.

[3]梁松. 基于矩心粒子群算法的船舶纵向运动参数辨识[D].大连海事大学,2020.DOI:10.26989/d.cnki.gdlhu.2019.000448.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值