本地部署 DeepSeek R1(最新)【从下载、安装、使用和调用一条龙服务】

一、安装 Ollama

1.1 下载

官方网址:Ollama

官网下载很慢,甚至出现了下载完显示 无法下载,需要授权

在这里插入图片描述

目前有两个解决方式:

  1. 复制下载链接,使用迅雷进行下载【右键点击正在下载文件,然后点击复制下载链接】
    在这里插入图片描述

  2. 使用已经下载好的文件,这里分享一下我已经下载好的文件:attachment; filename=OllamaSetup.exe【如果没有会员,下载速度和官网半斤八两就是了】

1.2 安装

  1. 打开下载好的安装程序
    在这里插入图片描述
  2. 点击 Install,等待安装
    在这里插入图片描述
  3. 安装完成后,可以验证一下,是否安装成功,打开命令行【win + R,输入 cmd】,输入 ollama 如果出现下面信息,则安装成功!
    在这里插入图片描述

二、下载 DeepSeek 模型

  1. 访问官网:Ollama ,点击 Models ,在点击 deepseek-r1
    在这里插入图片描述
  2. 在下载之前最好先配置一下环境变量,ollama 默认是下载在 C 盘的,如果要换盘,则需要添加环境变量。
    • 在搜索框中搜索 环境变量,并点击。
      在这里插入图片描述
    • 在 高级 模块,点击 环境变量
      在这里插入图片描述
    • 在 系统变量 模块,点击 新建
      在这里插入图片描述
    • 变量名必须为 OLLAMA_MODELS,变量值可以选择其他盘的一个文件夹【就是你想指定的下载位置】,输入完点击 确定 。
      【配置完重启一下 ollama 】
      【这个变量只能控制模型的下载位置,不能控制 ollama 的下载位置,就算先添加变量,ollama 还是安装在 C 盘,有点蠢的设计】
      在这里插入图片描述
  3. 对于自己的私人电脑,后几个模型就不用考虑了,电脑一般带不动。
    【一般来说,deepseek-r1:xb 中,x 数字越大,模型能力就越强,需要的资源就越大】
    【一个简单的判断方法就是,看显卡的显存和 Size 进行比较,一般 Size 小于等于显存是比较好的】
    【当然实际也可以安装超过显存的,只要内存+显存大于等于 Size 就行,就是可能速度比较慢】【没有显卡那就只能靠内存了】
    在这里插入图片描述
  4. 选择好要下载模型,点击进入到对应模型界面,复制 模型下载指令【我这里选择的是 14 b,记得要安装自己电脑的配置选择】
    在这里插入图片描述
  5. 将复制的命令输入到 cmd 中【 win + R,输入 cmd ,即可打开 cmd 界面】,等待下载
    在这里插入图片描述
  6. 出现 success 一般就表示安装成功了!
    在这里插入图片描述
  7. 可以 Ctrl + d 退出使用,然后输入 ollama list ,可以查看自己已经下载的模型。
    在这里插入图片描述

三、使用 DeepSeek

3.1 在命令行环境中使用

  1. 打开命令行【win + R ,输入 cmd】,输入命令 ollama run deepseek-r1:14b
    【如果是其他模型,改一下参数,比如如果是 8b,则输入命令 ollama run deepseek-r1:8b
    在这里插入图片描述
  2. 输入你的问题
    【简单问题,一般就直接回答出来了,如 ① 所示】
    【复杂问题,就需要进行思考,然后回答,如 ② 所示】
    在这里插入图片描述

3.2 在第三方软件中使用

【可以在第三方软件中接入 API ,例如:Chatbox AI】
【如果想在其他第三方软件中使用,具体可以查看官方的 API 接口文档:Ollama API

  1. 访问官网:Chatbox AI,下载 Chatbox AI ,
    在这里插入图片描述
  2. 打开下载好的安装程序,点击 下一步
    在这里插入图片描述
  3. 修改 安装位置,点击 安装 ,等待安装完成
    在这里插入图片描述
  4. 点击 完成 ,顺便打开 Chatbox
    在这里插入图片描述
  5. 点击 选用自己的 API Key 或者本地模型
    在这里插入图片描述
  6. 选择 Ollama API
    在这里插入图片描述
  7. 输入 API 地址,点击 获取
    在这里插入图片描述
  8. 选择自己安装的模型,点击 + 号即可
    在这里插入图片描述
  9. 点击新对话
    在这里插入图片描述
  10. 就可以进行正常使用
    在这里插入图片描述
<think>好的,我现在需要帮助用户了解如何在本地部署DeepSeek R1模型并通过Java调用其API接口。首先,我需要回忆之前提供的引用内容,特别是引用[1],里面提到了本地部署API调用的步骤。用户可能希望得到详细的步骤指导,包括环境准备、部署流程具体的Java代码示例。 首先,本地部署需要硬件软件的准备。根据引用[1],应该包括NVIDIA GPU、CUDA、Docker环境以及模型文件。我需要列出这些先决条件,并指导用户如何获取模型文件,比如通过官方渠道下载。 接下来是部署步骤。引用[1]提到了使用Docker进行部署,可能涉及拉取镜像、配置环境变量启动容器。需要详细说明这些步骤,确保用户能够正确执行。同时,可能还需要配置服务器参数,比如端口GPU资源,这里需要参考引用[1]中的服务器配置部分。 然后是API接口的搭建。用户可能需要通过RESTful API与模型交互,所以需要说明如何配置API服务,比如使用Python的Flask框架或者FastAPI。这部分可能需要示例代码,但用户最终想用Java调用,所以可能需要说明如何确保API服务正确运行,以便后续Java调用。 接下来是Java调用API的部分。用户需要知道如何发送HTTP请求到本地部署的API端点。这里需要提供Java代码示例,使用HttpClient或者OkHttp库来发送POST请求,处理JSON数据。需要包括依赖项、请求体的构建以及响应的解析。 另外,需要注意引用中提到的可能问题排查,比如端口冲突、依赖项缺失,需要给出常见问题及解决方法,帮助用户避免部署过程中的常见错误。 还需要考虑引用[2][3]中的内容,虽然主要关于SkyWalkingELK部署,但可能涉及系统配置Kubernetes部署,不过用户的问题集中在DeepSeek R1,所以可能主要参考引用[1]。 最后,生成相关问题,帮助用户进一步了解性能优化、多语言调用监控集成等方面。例如,如何优化性能,如何用其他语言调用,如何集成监控工具等。 需要确保所有步骤清晰,代码示例正确,并且符合用户的要求,使用中文回答,LaTeX格式正确,行内公式用$...$,独立公式用$$...$$。同时,引用标记要自然添加在相关段落末尾。</think>### DeepSeek R1本地部署与Java API调用指南 #### 一、本地部署步骤 1. **环境准备** - **硬件要求**:NVIDIA GPU(建议RTX 3090以上),显存16GB+,内存32GB+[^1] - **软件依赖**: ```bash # 基础环境 sudo apt-get install docker-ce nvidia-container-toolkit # 验证CUDA nvidia-smi ``` 2. **获取模型文件** -DeepSeek官方仓库下载R1模型文件(如`deepseek-r1-7b.bin`) - 模型目录结构示例: ``` /models/deepseek-r1/ ├── config.json ├── tokenizer/ └── pytorch_model.bin ``` 3. **Docker部署服务** ```bash # 拉取推理镜像 docker pull deepseek/r1-inference:latest # 启动容器(示例参数) docker run -d -p 8080:8000 \ --gpus all \ -v /models/deepseek-r1:/app/models \ -e MODEL_PATH=/app/models \ deepseek/r1-inference ``` 4. **验证部署** ```bash curl http://localhost:8080/healthcheck # 预期返回:{"status":"OK"} ``` #### 二、Java API调用实现 1. **添加依赖(Maven)** ```xml <dependency> <groupId>com.squareup.okhttp3</groupId> <artifactId>okhttp</artifactId> <version>4.12.0</version> </dependency> ``` 2. **Java调用示例** ```java import okhttp3.*; public class DeepSeekClient { private static final MediaType JSON = MediaType.get("application/json; charset=utf-8"); private final OkHttpClient client = new OkHttpClient(); public String generateText(String prompt) throws Exception { String jsonBody = String.format("{\"prompt\":\"%s\",\"max_tokens\":500}", prompt); RequestBody body = RequestBody.create(jsonBody, JSON); Request request = new Request.Builder() .url("http://localhost:8080/v1/completions") .post(body) .build(); try (Response response = client.newCall(request).execute()) { return response.body().string(); } } public static void main(String[] args) throws Exception { System.out.println(new DeepSeekClient().generateText("解释量子计算")); } } ``` 3. **响应处理** ```json { "id": "cmpl-3Q6w7t5w", "object": "text_completion", "created": 1689382927, "model": "deepseek-r1", "choices": [{ "text": "量子计算是基于量子力学原理...", "index": 0, "finish_reason": "length" }] } ``` #### 三、常见问题排查 1. **GPU资源不足**:检查`nvidia-smi`输出,确认显存占用率[^1] 2. **端口冲突**:使用`netstat -tuln | grep 8080`检查端口占用 3. **依赖项缺失**:通过`ldd /usr/local/cuda/lib64/libcudart.so`验证CUDA库 4. **API响应慢**:调整Docker启动参数`--shm-size=8g`增加共享内存[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值