
超图划分论文阅读总结
文章平均质量分 95
总结超图划分相关的论文,详细介绍了他们的相关工作、实现方案和实验结果等等方面。
理论最高的吻
天道日蔼蔼,我道日兴隆。若有永生日,我道即天道。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
K-SpecPart: Supervised Embedding Algorithms and Cut Overlay for Improved ...【2024 TCAD】
本文提出K-SpecPart,一种改进超图划分的监督谱框架,解决了现有多级划分器在全局结构考虑不足和局部最优风险方面的局限性。通过计算广义特征向量和监督降维技术生成全局感知的顶点嵌入,并结合切割叠加聚类整合多个划分解。实验显示,K-SpecPart在二分问题上比前作SpecPart提升15%切割质量,多路划分时对小K值改善达20%,对大K值仍保持2%优势,超越hMETIS和KaHyPar等领先划分器。该工作扩展了谱图理论在多级划分中的应用,为超图划分提供了新思路。原创 2025-06-08 23:56:36 · 756 阅读 · 1 评论 -
Improving Coarsening Schemes for Hypergraph Partitioning by Exploiting Community Structure【2017 SEA】
本文提出了一种改进的多级超图划分方法,通过在粗化阶段引入社区结构全局信息来提升划分质量。作者采用二分图表示和模块度最大化进行社区检测,定义了三种图边权重方案以适应不同超图类型。将该方法集成到KaHyPar划分器后,在VLSI设计、SAT求解等领域的294个超图上进行测试。实验结果表明,新方法在初始划分、平均解质量和最优解质量上均优于原始算法,且运行时间相当。根据超图密度自适应选择权重方案可获得最佳效果。该方法为超图划分提供了新的研究思路,实现了质量提升与效率的平衡。原创 2025-06-03 11:11:44 · 1248 阅读 · 0 评论 -
Engineering a direct k-way Hypergraph Partitioning Algorithm【2017 ALENEX】
本文提出了一种高效的多层超图划分算法KaHyPar,能够直接进行k路划分而无需递归二分。算法创新性地融合了基于min-hash的顶点聚类、改进的收缩方法以及自适应局部搜索策略。通过引入顶点指纹技术优化邻域更新范围,开发更快速的收缩算法,并采用多队列结构将FM启发式算法扩展到k路情形。实验表明,KaHyPar在求解质量和速度上均优于现有工具hMetis和PaToH,特别在处理连接权重等目标函数时表现突出。该算法有效解决了大型超边处理、平衡约束满足等关键问题,为超图划分提供了新的高效解决方案。原创 2025-05-26 23:49:02 · 1613 阅读 · 0 评论 -
k-way Hypergraph Partitioning via n-Level Recursive Bisection【2016 ALENEX】
本文提出了一种高效的多级超图划分算法KaHyPar,通过顶点收缩、组合初始划分和精细化优化三个阶段实现。算法创新性地采用缓存技术、懒更新策略和自适应不平衡预算分配,显著提升了运行效率和质量。实验基于310个来自VLSI、SAT求解等领域的超图,结果表明该算法比hMetis等工具快两个数量级,且划分质量更优。关键技术包括基于评分的顶点收缩、多种初始划分算法组合以及递归二分中的增益优化,为超图划分提供了高性能解决方案。原创 2025-05-26 23:33:34 · 1312 阅读 · 0 评论