image signal processing ISP相关

本文探讨了传统ISP的流程与操作,如暗影矫正、去马赛克等,并介绍了深度学习在图像信号处理领域的应用,如AIM2020挑战赛中的DeepISP和CameraNet模型,通过self-attention和CCA模块提升图像质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


20210310 重新审视isp


传统ISP 可能的流程、操作和算法

可能包括的操作

  • 暗影矫正
  • 坏点矫正
  • 去马赛克(demosaic)
  • 降噪(raw 域,yuv 域,rgb域?)
  • AWB/CCM
  • gamma

论文

AIM 2020 Challenge on Learned Image Signal Processing Pipeline

ECCV 2020 的竞赛
以前的PIRM、NTIRE、AIM 出现过很多图像增强的任务来提高图像的保真度和视觉感知(fidelity/percepture)


DeepISP

deepISP
有点像self-attention思想的会感觉,参照知识蒸馏文章中看到的,使用self-attentionCCA模块,都是这个效果,这里使用tanh激活表示残差可正可负


  • loss 函数
    l1 + msssim
    loss

CameraNet

  • Architecture
    networks
    pipeline

  • loss
    loss
    loss
    loss

两个网络都好大,但是以上网络都使用了attention的模块

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值