graphRAG好在哪里

你是否曾经遇到过这样的情况:向ChatGPT提问专业问题时,它给出的答案看似合理,但实际上缺乏深度或存在事实错误?今天,我们将探索一项解决这一问题的前沿技术——图检索增强生成(GraphRAG),这项结合知识图谱与检索增强生成的创新方法正在彻底改变AI在专业领域的应用方式。

大语言模型(LLM)如GPT系列在文本理解、问答和内容生成等多种任务上取得了令人瞩目的突破。然而,当面对需要专业领域知识的任务时,这些模型往往表现不佳。这主要是因为如下三个原因:

  • • 知识局限性:LLM的预训练知识在专业领域往往广而不深;

  • • 推理复杂性:专业领域需要精确的多步推理,而LLM难以在长推理链中保持逻辑一致性;

  • • 上下文敏感性:专业领域中同一术语在不同情境下可能有不同含义,LLM常常无法捕捉这些细微差别。

  •  

    传统RAG的挑战与局限

    传统的检索增强生成(RAG)技术通过引入外部知识库,在一定程度上改善了大语言模型的表现。然而,当面对复杂的专业问题时,传统RAG仍然面临三大挑战:

  • 1. 复杂查询理解困难:专业领域的问题往往涉及多个实体和复杂关系,传统RAG基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

偶尔摸点鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值