你是否曾经遇到过这样的情况:向ChatGPT提问专业问题时,它给出的答案看似合理,但实际上缺乏深度或存在事实错误?今天,我们将探索一项解决这一问题的前沿技术——图检索增强生成(GraphRAG),这项结合知识图谱与检索增强生成的创新方法正在彻底改变AI在专业领域的应用方式。
大语言模型(LLM)如GPT系列在文本理解、问答和内容生成等多种任务上取得了令人瞩目的突破。然而,当面对需要专业领域知识的任务时,这些模型往往表现不佳。这主要是因为如下三个原因:
-
• 知识局限性:LLM的预训练知识在专业领域往往广而不深;
-
• 推理复杂性:专业领域需要精确的多步推理,而LLM难以在长推理链中保持逻辑一致性;
-
• 上下文敏感性:专业领域中同一术语在不同情境下可能有不同含义,LLM常常无法捕捉这些细微差别。
-
传统RAG的挑战与局限传统的检索增强生成(RAG)技术通过引入外部知识库,在一定程度上改善了大语言模型的表现。然而,当面对复杂的专业问题时,传统RAG仍然面临三大挑战:
-
1. 复杂查询理解困难:专业领域的问题往往涉及多个实体和复杂关系,传统RAG基