Spark 中的 Shuffle 是分布式数据交换的核心流程,从源码角度分析 Shuffle 的执行路径

Spark 中的 Shuffle 是分布式数据交换的核心流程,涉及多个组件的协同工作。为了深入理解其处理过程,我们可以从源码角度分析 Shuffle 的执行路径,分为 Shuffle WriteShuffle Read 两个阶段。


1. Shuffle Write 阶段

Shuffle Write 的主要任务是将 Mapper 的数据按照分区规则(如 HashPartitioner)分割、排序并写入磁盘。

1.1 数据分区与序列化
  • 入口方法
    Mapper 阶段的 compute() 方法中调用了 ShuffleDependency 的相关逻辑。

    val partition = partitioner.getPartition(key)
    

    数据会根据 partitioner(如 HashPartitioner 或自定义分区器)计算目标分区。

  • 序列化
    每条数据会通过 serializerInstance.serialize() 进行序列化,将数据转换成字节流以便后续写入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值