最近我们线上系统发生了一起严重事故:订单号/流水号出现了重复,影响了核心业务流程。最终定位到根源:一个自研的二方包雪花算法ID生成器出现了问题。
下面我们来回顾一下雪花算法的标准结构,分析问题出在哪,并总结一些通用的设计建议。
一、标准雪花算法(Snowflake)
标准的Snowflake ID由一个64位long型整数构成:
txt
代码解读
复制代码
+----------------------------------------------------------------------------------------------------+ | 1 Bit | 41 Bits 时间戳 | 5 Bits 数据中心ID | 5 Bits 机器ID | 12 Bits 序列号 | +----------------------------------------------------------------------------------------------------+
- 1位符号位:始终为0,确保生成正数。
- 41位时间戳:记录与固定起始时间的毫秒差,可支持约69年。
- 10位机器ID:用于标识不同节点。
- 12位序列号:在同一毫秒内生成多个ID时使用,最多支持每毫秒生成4096个ID。
优点:
- 高性能生成唯一ID,按时间有序,适用于分布式环境。
二、我们的“定制版”雪花算法:问题在哪?
我们使用的二方包雪花算法结构如下(根据排查推测):
txt
代码解读
复制代码
+----------------------------------------------------------------------------------------------------+ | 31 Bits 时间戳Delta | 13 Bits 数据中心ID | 4 Bits 工作ID | 8 Bits 业务ID | 8 Bits 序列号 | +----------------------------------------------------------------------------------------------------+
看起来字段丰富,但存在严重问题:
1. 时间戳仅保留31位,最多支持24.85天!
- 左移33位后只用31位时间戳,
- 超过 2312^{31}231 毫秒后开始循环,
- 我们自定义的起始时间是2018年,2025年时早已绕了无数圈。
2. BusinessId 用的是 IP 最后一段
- 使用的IPy用点分隔的最后一位,即192.168.0.1的1,极容易重复。
3. WorkId 和 DataCenterId 未配置,全为0
- 相当于所有实例共享同一节点标识,唯一性形同虚设。
最终结果:时间轮回 + IP冲突 + 序列重复,ID彻底撞车。
三、教训总结
核心组件不建议自研
- 雪花算法涉及时钟回拨、位运算、分布式协调等关键细节,成熟组件更稳妥。
不盲信二方包
- 无论谁写的代码,都要看清实现逻辑,理解其唯一性保障机制。
合理设置机器ID
- 靠IP后缀太脆弱,建议集中规划,统一分配Worker ID和DataCenter ID。
提前覆盖边界场景
- 模拟长时间运行、序列号溢出、时间回拨等极端情况,确保系统稳健。
四、推荐做法
使用成熟的开源实现,如 Hutool、Baomidou 等:
java
代码解读
复制代码
// Hutool 示例 Snowflake snowflake = IdUtil.getSnowflake(1, 1); long id = snowflake.nextId(); // Baomidou 示例(支持从 IP/MAC 自动推导,也可手动指定) DefaultIdentifierGenerator generator = new DefaultIdentifierGenerator(1, 1); // workerId=1, dataCenterId=1 long id = generator.nextId("user");
对于中大型系统,DataCenterId 一般用来标识不同的机房或者 AZ (Availability Zone)。
WorkerId 的配置策略可以根据系统规模逐步演进:
-
简单方式:通过配置文件手动指定。这种方式配置简便,适用于开发环境或单机部署。
-
标准方式:将 IP 与端口号(或进程号)拼接后进行哈希,再对 WorkerId 总数取模。具备一定自动化能力,不依赖外部系统,适用于中小规模部署。
-
中级方案:依赖注册中心(如 Eureka、Nacos),在服务注册时分配编号,结合服务ID保障唯一性。
-
高级方案:使用 Redis、Zookeeper 等集中协调 WorkerId 分配与释放,支持动态扩容、避免冲突。
随着系统规模扩大,推荐逐步引入更复杂但更稳妥的机制,避免一开始就过度设计。
五、其它建议:不要将业务标志拼入ID中
有时我们为了确保唯一性,会试图将业务信息(如类型前缀、模块编号)拼接进ID。但这种做法会带来一系列问题:
- 会导致 ID 非全数字,失去原本按时间递增的排序特性,影响数据库索引效率;
- ID长度变得不规则或偏长,可能增加存储成本,也会影响日志展示、用户体验;
- 若业务字段含义变动,还可能造成数据兼容性问题。
更稳妥的做法是将业务字段单独存储,ID仅用于唯一标识和排序。
六、结语
别为造轮子而造轮子,尤其在基础组件上,不可抱侥幸心理。
如果你也有雪花算法的踩坑经验,欢迎交流分享!