空气质量指数预测分析与生物启发算法综述
空气质量指数预测分析
准确预测空气质量(AQ)在社会中具有重要的教育和实用价值。若无法准确预测,政府和社会将难以有效预防空气污染带来的健康危害,也难以提升应对危机的能力。
为了对德里的空气质量指数(AQI)进行预测,研究人员创建了基于机器学习算法的回归模型。通过实验研究发现,XGBoost模型和随机森林回归(RFR)模型都能取得不错的效果,但在测试中XGBoost模型表现更优。
以下是几种算法的性能指标对比表格:
| 算法 | RMSE | MSE | R² |
| — | — | — | — |
| RF | 40.95210628010 | 1677.0750087767 | 0.7652343795933 |
| XGBoost | 35.79737774958 | 1281.4522537465 | 0.8606305938167 |
| LR | 60.7251433175123 | 3687.54303093241 | 0.5515168081758 |
| LaR | 60.2313119485 | 3627.810939042 | 0.535886532225 |
从表格数据可以看出,XGBoost算法在RMSE(均方根误差)和MSE(均方误差)方面的值相对较小,R²(决定系数)的值相对较大,这表明该算法的预测误差较小,拟合效果较好。
当绘制PM 2.5的实际值和预测值的图表时,发现XGBoost回归模型能得到准确的结果,该模型可被各类组织有效用于预测特定区域的AQI。借助所提出的模型,能够计算出AQI,并提前向相关区域发出预