利用机器学习和R语言进行高级分析
在当今的数据科学领域,机器学习和R语言的结合为数据分析和预测提供了强大的工具。本文将深入介绍如何利用Azure Machine Learning Studio和R语言进行高级分析,包括环境介绍、操作步骤以及代码示例。
一、Azure Machine Learning Studio概述
Azure Machine Learning Studio是一个在线的、协作式的、拖放式的环境,可用于构建、测试和部署预测分析解决方案。它为新手和专业数据科学家都提供了便利,具有以下特点:
- 免费层级 :零责任启动,让你毫无顾虑地开始使用。
- 团队数据科学流程(TDSP) :提供了一个系统的方法和框架,用于构建智能应用程序,使数据科学家团队能够在机器学习解决方案的整个生命周期内有效协作。
登录Azure Machine Learning Studio后,左侧会显示以下选项卡:
| 选项卡 | 功能 |
| — | — |
| PROJECTS | 存储代表单个机器学习项目的实验、数据集、笔记本和其他资源的集合。 |
| EXPERIMENTS | 存储已创建、运行并保存为草稿的实验。这是最常用的选项。 |
| WEB SERVICES | 查看从实验部署的Azure机器学习Web服务。 |
| NOTEBOOKS | 显示你创建的任何Jupyter笔记本。Jupyter Notebook是一个基于Web的交互式计算平台,结合了实时代码、方程式、叙述性文本、可视化和交互式仪表板。 |
| DATASE