超详细!使用 DeepSeek+Docker+Dify 搭建个人知识库

随着 DeepSeek 不断爆火,越来越多的个人和企业都在搭建属于自己行业或自己的私域知识库,那么我们应该怎么使用 DeepSeek 来搭建只属于自己的私域知识库呢,其实不难,就让我们来一探究竟。

基于 DeepSeek 搭建个人私域知识库的流程图如下所示:

img

图 1 DeepSeek 模型搭建层流程拆解

img

图 2 知识库应用层流程拆解

首先,我们来完成私域知识库需要的模型层的搭建工作。

Ollama 的安装和 DeepSeek 模型的下载和使用。

然后就是安装 Docker,我以 Windows 系统为例,安装 Docker 的话,需要访问 Docker 的官网(https://www.docker.com/),选择对应操作系统的 Docker 进行下载和安装,如下图 3 所示。值得注意的是,Windows 系统安装的是 Docker Desktop Manager 版本,Mac OS 和 Linux 系统推荐安装费图形化界面版本,这是出于不同操作系统的优势来考虑的。

img

图 3 Docker 下载

点击上图 3 中的红框部分,即可自动开始下载 Docker ,我们需要等待 Docker 下载完毕之后,双击打开 exe 安装包,然后一路 next 安装结束即可。

安装完 Docker 之后,双击打开,我们会看到如下图 4 所示的 Docker 界面:

img

图 4 Docker-Widows 主页

如果在 Docker 时,提醒登录,我们可以直接跳过,不需要登录也能使用。

打开 Docker 之后,我们需要安装 Dify ,因为 Dify 是依赖于 Docker 的,如果没有 Docker ,我们是无法使用 Dify 的。

接着,我们需要创建一个空的文件夹,随便找一个剩余空间比较大的硬盘就行,要给 Dify 留出充足的空间,大概 10GB 左右吧。

然后打开命令行,Windows 系统推荐使用 Git Bash,然后依次执行下述命令:

git clone https://github.com/langgenius/dify.gitcd dify/dockercp .env.example .envdocker compose up -d # 如果版本是 Docker Compose V1,使用以下命令:docker-compose up -d

执行完上述命令之后,如果控制台没有报错,且能看到下图 5 中显示的 Container 信息,说明 Dify 已经安装成功了。

img

图 5 Dify 在 Docker 中的运行详情

最后,我们来完成使用 DeepSeek 在 Dify 中搭建自己的私域知识库的工作。

Win + R 快捷键,打开 Windows 命令行,然后输入 ipconfig -all 命令,查看自己本机的 ip 地址,复制该地址,然后粘贴到浏览器地址栏中,即可访问到 Dify 的登录首页页面,首次访问需要我们先注册,注册完成之后,即可登录,如下图 6 所示:

img

图 6 Dify 登录首页

登录进去之后,在 Dify 首页的右上角用户头像位置,选择设置,进入到设置界面,如下图 7 所示:

img

img

图 7 模型供应商选择

进入到设置界面之后,选择左侧的模型供应商,并且在右侧的添加更多模型提供商列表中,选择 Ollama ,注意选择的是 Ollama 不是 DeepSeek,这里要注意一下。然后点击添加模型按钮,填入必要的信息,如下图 8 所示:

img

图 8 添加 Ollama 模型

模型名称对应的是我们 Ollama 中已经下载部署好的模型名称,不区分大小写;基础 URL 是 Ollama 映射出的模型后台服务地址,默认端口号是 11434;模型类型选择对话。剩下的其余参数可使用默认配置, 但是 IT 小同学建议将下图 9 红框中的配置打开,以获取更好的性能:

img

图 9 修改 Dify-Ollama 模型的默认配置项

全部配置完以后,点击保存,即可完成 DIfy 与 DeepSeek 模型的嵌入工作,也就是 Dify 已经集成了 DeepSeek 模型。

我们还需要部署一种模型,就是 TEXT_EMBEDDING 模型,这种模型可将我们上传的知识库文件转换成纯文本大语言模型可识别的向量词,然后传递给我们的大模型进行分析,所以,这个模型是必须要安装的,否则,我们就无法使用我们的知识库。

运行以下命令,以安装 TEXT_EMBEDDING 大模型 bge-m3:

ollama pull bge-m3

安装好 TEXT_EMBEDDING 模型之后,接下来就可以创建我们的 ChatBot 了。

回到 DIfy 工作室,点击创建空白应用,会弹出应用创建对话框,随便填写个名字即可,如下图 10 所示:

img

图 10 Dify 创建空白应用

点击创建按钮,会进入到应用的调试界面,如下图 11 所示:

img

图 11 Dify 应用调试界面

在应用调试界面的右上角,需要选择我们刚刚集成好的 DeepSeek 模型,参数配置不需要额外配置,使用默认的即可。 然后我们可以随便问个问题,来测试我们集成的 DeepSeek 模型是否可用,如下图 12 所示:

img

图 12 测试 Dify-DeepSeek 模型是否可用

只要 Dify 给了我们回复,就表示我们集成到 Dify 的 DeepSeek 模型是可用的。

接着,我们来配置我们的知识库,选择 Dify 顶部栏的知识库选项,并点击创建知识库,如下图 13 所示:

img

图 13 创建知识库

创建知识库之后,我们就可以来配置我们的知识库了,如下图 14 所示:

img

图 14 配置知识库

我们可以选择导入已有文本、同步自 Notion 内容、同步自 Web 站点三个选项。以导入已有文本为例,将需要投喂到 DeepSeek 大模型中的文档进行上传,在选择了文件之后,点击下一步按钮,可进行后续的配置,如下图 15 所示:

img

图 15 知识库调试

这里面,通用配置不用额外配置,索引方式选择高质量模式,以便更好地对我们上传的文档进行向量化转化。

img

图 16 TEXT_EMBEDDING 模型选择

而 Embedding 模型,则选择我们安装好的 bge-m3 模型即可。下面的检索设置不需要额外的配置。之后,保存并处理,等待文档被解析完毕,如下图 17 所示:

img

图 17 知识库解析文件

接着,我们回到我们创建的应用中,在上下文配置面板,点击添加按钮,选择刚才解析好的文档进行使用,选择之后点击添加即可将该文档添加到 DeepSeek 中,我们再次询问 DeepSeek 有关问题时,DeepSeek 就会自动引入我们添加的文档,并结合文档内容进行回复,如下图 18 所示:

img

图 18 选择引用知识库

DeepSeek 结合知识库的回答效果如下图 19 所示:

img

图 19 DeepSeek 结合知识库回复

经过上述步骤的操作,我们就完成了使用DeepSeek+Docker+Dify 搭建个人私域知识库的全部流程,可以将 DeepSeek 训练成特定业务领域的智能助手了。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
<think>好的,用户想了解如何使用DeepSeekDify搭建知识库并在局域网中调用。我需要先回顾之前的引用内容,确保提供的信息准确。 首先,根据引用[^1],部署DeepSeek本地知识库需要从GitHub下载Dify的社区版,解压后进入docker文件夹,或者直接克隆仓库。可能需要安装Dockerdocker-compose,这是常见的部署步骤。然后配置环境变量,比如设置数据库和API密钥。启动服务后,应该能通过本地IP访问Dify界面。 接下来是集成DeepSeek模型。用户可能需要在Dify中添加模型API密钥,并配置模型设置,确保DeepSeek的API端点正确。创建知识库时,上传文档并设置处理参数,比如分块大小和重叠长度。 关于局域网调用,引用[^2]提到使用systemctl编辑服务文件,设置重启策略,并用局域网IP。这可能涉及到修改Dify的配置,使其绑定到0.0.0.0,或者指定局域网IP,然后通过防火墙开放相应端口,比如80或8080。这样其他设备就能通过http://局域网IP:端口访问服务。 用户可能遇到的常见问题包括环境变量配置错误、端口冲突或权限问题。需要提醒检查Docker日志,确认服务正常运行,并测试局域网连通性。此外,安全方面建议使用内网HTTPS或设置访问控制,避免公开暴露服务。 最后,生成相关问题时要覆盖部署、集成、调用、优化和故障排除等方面,帮助用户全面了解整个流程。确保回答结构清晰,分步骤说明,并引用正确的来源。</think>### DeepSeek+Dify 知识库部署与局域网调用方法 #### 一、部署环境准备 1. **获取Dify社区版** 通过Git下载源码: ```bash git clone https://github.com/langgenius/dify.git cd dify/docker ``` 或下载ZIP包解压后进入`docker`目录[^1]。 2. **安装Docker环境** 需提前安装: - Docker 20.10+ - docker-compose 2.18+ #### 二、Dify服务配置 1. **修改配置文件** 编辑`.env`文件设置关键参数: ```env DB_PASSWORD=your_db_password DEEPSEEK_API_KEY=your_api_key ``` 2. **启动服务** 执行命令启动容器: ```bash docker-compose up -d ``` 启动后访问`http://localhost`进入Dify控制台。 #### 三、DeepSeek模型集成 1. **模型配置路径** 在Dify控制台依次操作: ``` 应用设置 > 模型供应商 > 添加DeepSeek API密钥 ``` 配置模型端点地址: $$ \text{API\_ENDPOINT} = \text{https://api.deepseek.com/v1} $$ 2. **知识库创建** - 上传PDF/TXT等格式文档 - 设置文本分块参数: $$ \text{chunk\_size}=512,\ \text{overlap}=64 $$ #### 四、局域网访问配置 1. **服务绑定设置** 修改`.env`文件: ```env BIND_ADDRESS=0.0.0.0 # 开放所有网络接口 PORT=8080 # 指定服务端口 ``` 2. **防火墙配置** 开放对应端口(以Ubuntu为例): ```bash sudo ufw allow 8080/tcp ``` 3. **局域网调用测试** 在其他设备访问: ```bash curl http://[服务器局域网IP]:8080/api/v1/completion -H "Authorization: Bearer [API_KEY]" ``` #### 五、常见问题排查 - **服务无法启动**:检查`docker logs dify-web`查看错误日志 - **局域网无法访问**:确认服务器防火墙设置,建议执行`telnet [IP] 8080`测试端口连通性 - **知识库索引失败**:调整分块策略,建议设置: $$ \text{max\_chunk\_size} \leq 1024 $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值