🔥关注墨瑾轩,带你探索编程的奥秘!🚀
🔥超萌技术攻略,轻松晋级编程高手🚀
🔥技术宝库已备好,就等你来挖掘🚀
🔥订阅墨瑾轩,智趣学习不孤单🚀
🔥即刻启航,编程之旅更有趣🚀
一、窗口函数基础:披萨分类术
1.1 什么是窗口函数?
窗口函数 = 分组 + 排序 + 聚合,但不合并行数!
比如:你想知道每个部门工资最高的员工是谁,但还想保留所有员工的工资明细。
-- 示例:计算每个部门工资总和(保留所有行)
SELECT
department,
salary,
SUM(salary) OVER (PARTITION BY department) AS dept_total_salary
FROM employees;
类比:
PARTITION BY department
= 把披萨切成部门小块。
SUM(salary)
= 每个小块里算总工资。
OVER()
= 魔法咒语,告诉数据库“别合并行数!”
二、人大金仓 vs MySQL:3大核心差异
差异1:框架定义——“窗口”能有多大?
2.1 人大金仓:精细控制窗口边界
人大金仓支持 ROWS BETWEEN ...
精确定义窗口范围,比如“从当前行往前数5行”。
-- 人大金仓:计算部门内工资的累计总和(从第一行到当前行)
SELECT
employee_id,
department,
salary,
SUM(salary) OVER (
PARTITION BY department
ORDER BY salary
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS running_total
FROM employees;
注释:
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
= 从部门第一行到当前行。
2.2 MySQL:简化版窗口定义
MySQL 8.0之后支持窗口函数,但默认窗口范围是“从第一行到当前行”,无法手动指定。
-- MySQL:默认累计总和(效果与人大金仓相同)
SELECT
employee_id,
department,
salary,
SUM(salary) OVER (
PARTITION BY department
ORDER BY salary
ROWS UNBOUNDED PRECEDING
) AS running_total
FROM employees;
灵魂拷问:
如果你需要“从当前行往后5行”的窗口,人大金仓能直接写,MySQL只能靠“猜”!
差异2:排序与分组——谁更灵活?
2.1 人大金仓:RANGE vs ROWS 随你选
人大金仓支持 RANGE
和 ROWS
,你可以根据值或行号定义窗口。
-- 人大金仓:按工资排序,计算“小于等于当前工资”的总人数
SELECT
employee_id,
department,
salary,
COUNT(*) OVER (
ORDER BY salary
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS cume_dist
FROM employees;
注释:
RANGE
= 根据工资值范围定义窗口(比如工资=5000时,包含所有5000及以下的行)。
2.2 MySQL:RANGE 有局限性
MySQL 的 RANGE
必须结合 ORDER BY
使用,且对非连续值(如日期)支持较弱。
-- MySQL:同样的语法,但结果可能因实现不同而略有差异
SELECT
employee_id,
department,
salary,
COUNT(*) OVER (
ORDER BY salary
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS cume_dist
FROM employees;
彩蛋小技巧:
如果你在MySQL中处理日期,RANGE
可能会因为“日期格式”出错,建议用ROWS
替代!
差异3:性能与中文支持——谁更适合中国胃?
3.1 人大金仓:中文优化 + 多表关联加速
人大金仓针对中文字符集做了优化,处理含中文字段的窗口函数时,速度更快!
-- 人大金仓:按中文部门名称分组
SELECT
department_name,
salary,
AVG(salary) OVER (
PARTITION BY department_name
) AS avg_salary
FROM employees;
注释:
department_name
是中文字段,人大金仓处理起来更丝滑!
3.2 MySQL:高并发读写更强,但中文略逊一筹
MySQL在高并发读写场景(如电商订单统计)表现优秀,但对中文字段的窗口函数处理稍慢。
-- MySQL:同样的中文字段,性能可能稍差
SELECT
department_name,
salary,
AVG(salary) OVER (
PARTITION BY department_name
) AS avg_salary
FROM employees;
灵魂拷问:
如果你的数据全是中文,选人大金仓;如果数据是英文,选MySQL,谁也不坑谁!
三、实战演练:从“小白”到“大师”
3.1 案例1:部门工资排名
人大金仓 vs MySQL:RANK() vs DENSE_RANK()
-- 人大金仓:允许重复排名,但不会跳过后续编号
SELECT
employee_id,
department,
salary,
DENSE_RANK() OVER (
PARTITION BY department
ORDER BY salary DESC
) AS dense_rank
FROM employees;
-- MySQL:同样的语法,但结果可能因实现不同而略有差异
SELECT
employee_id,
department,
salary,
DENSE_RANK() OVER (
PARTITION BY department
ORDER BY salary DESC
) AS dense_rank
FROM employees;
代码注释小剧场:
DENSE_RANK()
= 不跳号的排名(1,2,2,3)。RANK()
= 跳号的排名(1,2,2,4)。
3.2 案例2:跨行取值(LAG/LEAD)
人大金仓:支持 LAG/LEAD 偏移量自定义
-- 人大金仓:取上一行工资(默认偏移1)
SELECT
employee_id,
department,
salary,
LAG(salary, 1, 0) OVER (
PARTITION BY department
ORDER BY salary
) AS prev_salary
FROM employees;
注释:
LAG(salary, 1, 0)
= 取上一行工资,若没有则返回0。
MySQL:LAG/LEAD 功能相似,但语法稍简
-- MySQL:同样的功能,语法几乎一样
SELECT
employee_id,
department,
salary,
LAG(salary, 1, 0) OVER (
PARTITION BY department
ORDER BY salary
) AS prev_salary
FROM employees;
灵魂拷问:
如果你需要“取上两行”的数据,人大金仓可以直接写LAG(salary, 2, 0)
,MySQL也能做到!
四、进阶玩法:让窗口函数“开挂”!
4.1 批量处理:一口气搞定所有部门!
-- 人大金仓:批量计算各部门工资总和
SELECT
department,
salary,
SUM(salary) OVER (
PARTITION BY department
) AS dept_total
FROM employees
WHERE department IN ('销售部', '技术部');
类比:
就像用扫地机器人,一次搞定全屋清洁!
4.2 错误处理:别让程序“猝死”!
-- 人大金仓:处理空值
SELECT
employee_id,
COALESCE(salary, 0) AS safe_salary,
SUM(COALESCE(salary, 0)) OVER () AS total
FROM employees;
注释:
COALESCE(salary, 0)
= 如果工资为空,自动填0,避免报错!
五、 谁是窗口函数的“王者”?
特性 | 人大金仓 | MySQL |
---|---|---|
窗口边界控制 | 精细(ROWS/RANGE) | 简化版(默认UNBOUNDED PRECEDING) |
中文支持 | 强(优化字符集处理) | 弱(需额外配置) |
性能表现 | 多表关联优化强 | 高并发读写强 |
兼容性 | 兼容MySQL语法(适合迁移) | 全球通用 |
适合场景 | 企业级中文应用、复杂分析 | 互联网高并发场景 |