多维高斯分布

这篇博客通过一个二维高斯分布的例子,详细介绍了从一维高斯分布到高维高斯分布的推导过程。内容包括高维高斯分布的公式来源、二维情况下的协方差矩阵计算、函数图像的对比以及参数估计方法。通过实例展示了如何从二维高斯分布的公式推导出多维高斯分布,强调了在多维情况下,高维公式如何退化为一维公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

我们常见的一维高斯分布公式为: 

 

                                                          $$ \mathit{N(x\vert \mu, \sigma^2)} = \frac{1}{\sqrt{2\pi\sigma^2}}exp[-\frac{1}{2\sigma^2}(x-\mu)^2] $$

 

拓展到高维就变成:

 

                                                   $$ \mathit{N(\overline{x}\vert \overline{\mu}, \Sigma)} = \frac{1}{(2\pi)^{\frac{D}{2}}}\frac{1}{|\Sigma|^{\frac{1}{2}}}exp[-\frac{1}{2}(\overline{x}-\overline{\mu})^{\mathit{T}}\Sigma^{-1}(\overline{x}-\overline{\mu})] $$

 

其中,$ \overline{x} $ 表示维度为 $ \mathit{D} $ 的向量, $ \overline{\mu} $ 则是这些向量的平均值, $ \Sigma $ 表示所有向量 $ \overline{x} $ 的协方差矩阵。 

本文简单探讨一下,上面这个 高维的公式是怎么来的。 

二维的情况

为了简单起见, 本文假设所有变量都是相互独立的。即对于概率分布函数 f(x_0,\dots, x_n) 而言, 有 f(x_0, x_1, \dots, x_n) = f(x_0)f(x_1)f(x_n) 成立。 

现在,我们用一个二维的例子推出上面的公式。

假设有很多变量 $ \overline{x} = \begin{bmatrix} x_1\\x_2 \end{bmatrix}\quad $, 他们的均值为 $ \overline{\mu} = \begin{bmatrix} \mu_1\\\mu_2 \end{bmatrix}\quad $, 方差为 $ \overline{\sigma} = \begin{bmatrix} \sigma_1\\\sigma_2 \end{bmatrix}\quad $

由于x_1 , x_2 是相互独立的, 所以, \overline{x} 的高斯分布函数可以表示为: 

 

\begin{flalign} f(\overline{x}) & = f(x_1, x_2) & = f(x_1)f(x_2) \end{flalign}                               

<think>嗯,用户想找如何拟合三维高斯函数的方法或代码实现。首先,我需要回忆一下三维高斯函数的数学表达式是什么样的。三维高斯函数通常可以表示为$G(x,y,z) = A \exp\left( -\left( \frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2} + \frac{(z-z_0)^2}{2\sigma_z^2} \right) \right)$,其中包含参数A、x0、y0、z0、σx、σy、σz。用户可能需要用编程方法拟合这些参数,所以应该考虑常见的数值优化方法,比如非线性最小二乘法。 接下来,我需要考虑不同的编程语言实现。用户可能使用Python、MATLAB或者其他语言。Python的话,SciPy库中的curve_fit函数很常用,可以用来进行非线性拟合。MATLAB也有类似的函数,如lsqcurvefit。另外,可能需要生成一些三维数据点作为示例,或者用户有自己的数据集。 然后,关于步骤,拟合过程通常包括定义模型函数、准备数据、设置初始猜测参数、调用拟合函数,最后验证结果。需要注意初始猜测对拟合结果的影响,可能会影响收敛速度和准确性。此外,对于三维数据,数据点的格式可能需要处理成适合拟合的形式,比如将三维网格坐标展开为一维数组,并将对应的函数值也展开为一维数组。 用户可能遇到的问题包括数据噪声大导致拟合困难,或者参数初始值选择不当导致拟合失败。这时候可能需要数据预处理,或者尝试不同的初始值策略。另外,三维数据的可视化也是一个挑战,可能需要使用三维散点图或等值面图来展示拟合结果。 还要考虑是否有现成的库或工具包可以使用。例如,Python中的scipy.optimize.curve_fit,或者使用更高级的机器学习库如TensorFlow、PyTorch进行优化。不过对于简单的拟合,SciPy应该足够。如果用户需要处理更复杂的情况,比如带有约束条件的拟合,可能需要使用不同的优化算法,比如带有约束的最小二乘法。 最后,需要确保代码示例的正确性,包括正确导入库,处理数据格式,以及正确传递参数给拟合函数。同时,提醒用户注意参数的单位和范围,避免数值计算中的溢出或下溢问题。例如,指数函数的参数过大可能导致计算时出现inf,这时候可能需要对数据进行归一化处理。</think>### 三维高斯函数拟合方法及实现 #### 1. 三维高斯函数定义 三维高斯函数的标准形式为: $$G(x,y,z) = A \exp\left( -\left( \frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2} + \frac{(z-z_0)^2}{2\sigma_z^2} \right) \right)$$ 包含参数:峰值位置$(x_0,y_0,z_0)$、幅值$A$、标准差$(\sigma_x,\sigma_y,\sigma_z)$[^1] #### 2. 拟合步骤 1. **数据准备**:构造/加载三维点云数据$(x_i,y_i,z_i,I_i)$,其中$I_i$是测量值 2. **定义目标函数**:将高斯函数作为拟合模型 3. **参数初始化**:估算初始参数值 4. **优化求解**:使用非线性最小二乘法求解参数 5. **结果验证**:计算残差、可视化拟合结果 #### 3. Python实现示例(使用SciPy) ```python import numpy as np from scipy.optimize import curve_fit # 定义三维高斯函数模型 def gaussian_3d(coords, A, x0, y0, z0, sigma_x, sigma_y, sigma_z): x, y, z = coords exponent = -((x-x0)**2/(2*sigma_x**2) + (y-y0)**2/(2*sigma_y**2) + (z-z0)**2/(2*sigma_z**2)) return A * np.exp(exponent) # 生成模拟数据 x = np.linspace(-5,5,50) y = np.linspace(-5,5,50) z = np.linspace(-5,5,50) X,Y,Z = np.meshgrid(x,y,z) true_params = [10.0, 1.0, -1.0, 0.5, 1.5, 2.0, 1.0] noise = np.random.normal(0,0.5,X.shape) data = gaussian_3d((X,Y,Z), *true_params) + noise # 转换为曲线拟合所需格式 xdata = np.vstack((X.ravel(), Y.ravel(), Z.ravel())) ydata = data.ravel() # 参数拟合 initial_guess = [8, 0, 0, 0, 1, 1, 1] popt, pcov = curve_fit(gaussian_3d, xdata, ydata, p0=initial_guess) print("拟合参数:", popt) print("真实参数:", true_params) ``` #### 4. 关键优化点 - 初始参数估算:可通过数据最大值定位中心点,半高宽估算标准差 - 数据归一化:对坐标进行标准化处理可提升收敛速度 - 约束条件:添加参数范围约束(如幅值必须为正) ```python # 带约束的拟合示例 bounds = ([0, -np.inf, -np.inf, -np.inf, 0, 0, 0], [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf]) popt, pcov = curve_fit(gaussian_3d, xdata, ydata, bounds=bounds) ``` #### 5. 结果验证方法 - 残差分析:$$R^2 = 1 - \frac{\sum(y_i - \hat{y_i})^2}{\sum(y_i - \bar{y})^2}$$ - 参数置信区间:通过协方差矩阵计算标准差 - 三维可视化(使用Mayavi): ```python from mayavi import mlab mlab.contour3d(X,Y,Z,data, contours=10) mlab.contour3d(X,Y,Z,gaussian_3d((X,Y,Z),*popt), contours=10, color=(1,0,0)) mlab.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Baobin Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值