机器学习之感知机与梯度下降法认知

本文介绍了感知机作为线性二分类模型的工作原理,寻找最优超平面以最小化损失函数。当数据无法线性划分时,通过梯度下降法优化,包括随机梯度下降、批量梯度下降和小批量梯度下降。文中详细阐述了梯度下降法在感知机模型中的应用,展示了参数更新的过程,并给出实例进行优化演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 感知机原理:

        感知机是一种线性二分类模型,其目的是找到能将训练数据线性可分的分离超平面。对于数据集T

                                         

        来说,存在可将数据集线线性划分的超平面S:  

                                                                 

        如下图所示:图一表示的直线可以将两类数据线性可分,而图二,图三则无法线性划分。

                        

        在实际问题中,并不是所有的数据都能线性可分,而我们要做到的是力求寻找到最优的超平面 S 使数据误分类点尽量最少,即损失函数最小化。又因为误分类点个数与感知机的w和b参数均其不可导,为了引入梯度下降法求取损失函数极小值,损失函数是误分类点到超平面的总距离。

        样本空间中任何一点到超平面的距离可以表示为:

                                                                    


其中为超平面权重的模。对于误分类点来说,因为样本点的的真实类别标签为+1或者-1,则误分类点的的预测结果:

                                                         

        由此可见预测结果与真实结果的符号是相反的,因此,误分类点到超平面的距离可以表示为:

                                                          

        则感知机模型的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值