常用图表对比

常用图表对比

柱状图VS条形图

同:

  • 数据的结构相同,都是由“一个分类字段”+“一个连续数值字段”构成的。
  • 当数据记录数不大,不令图表看起来过于密集的情况下(一般情况下,数据条数大于12条时,不适合使用柱状图),两种图表类型可互换。
  • 当分类字段(X轴字段)的字符长度适中时,即使用者可很方便阅读分类字段,且字符的排列不影响图表美观时,两种图表类型可互换。

  • 若分类字段恰好是有顺序的,比如说时间字段,建议使用柱状图,因为柱状图能更好地展现数据随分类按顺序变化时地情况
  • 当数据记录数过多,导致图表密集,或者分类字段字符过长导致不易阅读时,建议使用条形图。
柱状图VS直方图

同:

  • 数据的结构相同,都是由“一个分类字段”+“一个连续数值字段”构成的。

异:

  • 分析目的和适用场景不同。柱状图主要是比较数据的大小,直方图是用来展示数据的分布。
  • 映射到X轴的数据属性不同。柱状图的X轴一般是分类数据,而直方图的X轴一般是连续的分组区间。
  • 柱子宽度代表的意义不同。在柱状图中,柱子的宽度没有实际的含义,而直方图中柱子的宽度代表了区间的长度(即组距),根据区间的不同,柱子的宽度可以不同,但其宽度原则上应该为组距的整倍。
  • 表示数据大小的方式不同。柱状图通过柱子高度来映射数值的大小,且柱子之间有间隔,而直方图,通过高度(频数直方图)或面积(频率直方图)来表示数据的大小,且柱子之间紧密相连,没有间隔。
堆叠柱状图VS百分比堆叠柱状图

同:

### Tableau 中常用图表类型及其应用场景 #### 条形图 & 柱状图 条形图和柱状图用于比较不同类别的数量或频率。这类图表非常适合展示分类数据之间的对比关系,尤其是在类别数目不多的情况下可以清晰直观地展现差异[^1]。 ```python import pandas as pd import numpy as np from tableausdk import * data = {'Category': ['A', 'B', 'C'], 'Value': [np.random.randint(0, 10), np.random.randint(0, 10), np.random.randint(0, 10)]} df = pd.DataFrame(data) # Assuming the DataFrame `df` is connected to a Tableau data source. ``` #### 饼图 饼图用来表示部分整体的比例情况,当需要强调各个组成部分相对于总数的重要性时尤为有用。不过需要注意的是,过多的部分会使饼图难以阅读,因此建议只在分割较少的时候使用此类型的图表[^2]。 #### 散点图 散点图通过坐标轴上的点来呈现两个变量间的关系模式,有助于识别潜在的相关性和异常值。这种图表特别适合探索数值型数据间的关联程度。 #### 甘特图 甘特图主要用于项目管理领域,以时间线形式展示任务进度安排。它可以帮助团队成员清楚看到各项活动的时间跨度及先后顺序,从而更好地规划资源分配和协调工作流程。 #### 直方图 直方图是一种统计图形,用矩形面积表达连续区间内频数分布状况。这使得观察者能够迅速掌握一组测量值的大致范围、集中趋势以及离群点的存在否。 #### 标靶图 标靶图通常被设计成圆形目标区域的形式,内部标记有多个同心圆环代表不同的绩效等级界限。此类图表常应用于业绩评估场合下衡量实际成果距离预期标准还有多远的距离。 #### 折线图突出显示表结合 将折线图同突出显示表结合起来使用可以在保持宏观走势可见的同时让读者轻松定位至特定细节层次的信息节点上,提高了信息传递效率并增强了用户体验感[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值