[YOLO模型](1)YOLO的介绍

一、YOLO概述

YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,由Joseph Redmon等人于2016年提出。它的主要特点是速度快且准确性高,非常适合用于实时目标检测任务。

YOLO将目标检测任务看作一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。这意味着YOLO只需要对图像进行一次前向传播,就可以同时预测多个边界框和它们的类别,从而大大减少了计算量。

1.核心思想

YOLO的核心思想是将图像划分为一个S×S的网格,每个网格负责预测中心落在该网格内的目标。每个网格会预测B个边界框以及这些边界框的置信度。置信度反映了边界框是否包含目标以及边界框的准确度。此外,YOLO还会为每个网格预测C个类别概率,这些概率表示了网格中包含属于某个类别的目标的条件概率。

此外,YOLO算法还采用了多尺度特征融合的技术,使得算法能够在不同尺度下对目标进行检测。相比于传统的目标检测算法,如R-CNN、Fast R-CNN和Faster R-CNN等,YOLO算法具有更快的检测速度和更高的准确率。这得益于其端到端训练方式和单阶段检测的特性,使其可以同时处理分类和定位任务,避免了传统方法中的多阶段处理过程。因此,YOLO算法广泛应用于实时目标检测自动驾驶等领域。

2.经典的检测算法

在这里插入图片描述

one-stage

  • 优点:识别速度非常快,适合做实时检测任务
  • 缺点:正确率相比较低

FLOPS:表示模型进行一次前向传播(即处理一张图像)所需要的浮点运算次数。它是一个衡量算法效率的关键指标,与模型的计算量和推断速度密切相关。

FPS:每秒可以处理的图像数量。

在这里插入图片描述
检测过程:输入一张图片,直接得到一张图片并且候选框框选出物体。

在这里插入图片描述

two-stage

  • 优点:正确率比较高,识别效果理想。
  • 缺点:识别速度比较慢,通常达到 5 FPS。

两阶段目标检测器是一种先生成候选框,然后对候选框进行分类和回归的检测方法。这种方法主要包括两个阶段:

第一阶段:生成候选框。这通常通过一个类似于Selective Search或EdgeBoxes等区域提名算法来实现,该算法从输入图像中生成多个候选框。每个候选框都会经过一个CNN模型进行特征提取,然后通过分类器进行过滤,保留与目标物体更相似的候选框

第二阶段:在保留的候选框上进行精细的分类和回归。这个阶段通常使用另一个CNN模型或类似SVM的分类器来进行分类和回归。对于每个候选框,可能需要预测物体的类别、位置和大小等。代表性的两阶段目标检测器包括R-CNN系列,以及其改进版本Fast R-CNN、Faster R-CNN和Mask R-CNN等。

在这里插入图片描述

二、Map评估指标

我们知道,在机器学习时对于结果的评估指标有:

  • 分类:召回率、精确值以及准确值等等
  • 回归:R方(决定系数)
  • 聚类:轮廓系数

那么,现在对于YoLo算法得到的结果,是如何评估的呢?

使用Map指标来评估算法的性能。

1.含义

Map指标结合了精确率(Precision)和召回率(Recall),用于衡量模型在不同类别目标上的检测准确性和覆盖率。具体来说,Map指标通过计算每个类别的精确率-召回率曲线下的面积(Area Under the Precision-Recall Curve,AUC-PR),然后对所有类别的AUC-PR进行平均,得到Map分数。这个分数越高,表示模型的检测性能越好。

2.Map指标的计算过程

  1. 确定TP、FP、FN和TN

  • 真正例(True Positive, TP):模型正确预测为正类的样本数
  • 假正例(False Positive, FP):模型错误预测为正类的样本数(实际为负类)
  • 真反例(True Negative, TN):模型正确预测为负类的样本数
  • 假反例(False Negative, FN):模型错误预测为负类的样本数(实际为正类)

在目标检测中,如果一个预测框与某一个GT(Ground Truth)的交并比(IoU) 大于某个阈值(如0.5),则认为这个预测框正确(真正例),标记为TP。否则,如果预测框被错误地判断为正样本,则标记为FP。同样地,如果实际的正样本没有被模型预测出来,则标记为FN。

  2. 计算精确率和召回率:

  • 精确率(Precision):
    在这里插入图片描述
  • 召回率(Recall):
    在这里插入图片描述

  3. 绘制PR曲线:

  • 召回率为横坐标精确率为纵坐标,绘制出不同召回率下的精确率值,形成PR曲线。

  4. 计算AP(Average Precision):

  • AP衡量的是模型在每个类别上的好坏,它是PR曲线下的面积。通常通过插值法来计算AP值,即对每个不同的召回率值,取其对应的最大精确率值,然后计算这些精确率值的平均值

  5. 计算Map:

  • 得到所有类别的AP值后,取这些AP值的平均值即可得到Map分数。
    在这里插入图片描述
    根据不同的阈值,绘制出召回率和精确率的曲线,将曲线以下的面积作为MAP值。当MAP值越大,则表示指标越好

总结

本篇介绍了:

  1. YOLO是一种基于深度学习的目标检测算法。注意,是一个回归问题!!
  2. 两种经典的检测方法:one-stage和two-stage。
    one-stage:直接生成候选框,定位图像。
    two-stage:先生成候选框标出所有的物体,然后找到目标物体。
  3. 使用Map指标来评估YOLO算法的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值