【网络学习&复现】unet系列之unet++&unet3+

本文记录了Unet++和Unet3+的学习历程,包括论文解读、作者见解、代码实现和网络结构分析。Unet++通过增加小跳连接和深监督提高分割精度,Unet3+则更注重边界定位的精确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

unet++

学习历程记录

0、一位大大的论文解读
https://blog.csdn.net/weixin_40519315/article/details/104457459
1、unet++作者在知乎上的解读
https://zhuanlan.zhihu.com/p/44958351
get到了网络大致是在保留原来unet的长跳的同时加了许多小跳
用到了深监督。
因为采用了深监督,所有可以进行剪枝。因为L1到L4均可以计算loss,我个人的理解是。
2、unet++作者的视频解读,没了打不开
http://www.mooc.ai/open/course/549
3、unet++论文
https://arxiv.org/abs/1807.10165
4、unet++代码
源码链接:
https://github.com/MrGiovanni/UNetPlusPlus
其他人编写的链接,被原作列出来了
在这里插入图片描述
也是这位大大用来改的代码~
https://github.com/4uiiurz1/pytorch-nested-unet
5、论文翻译
https://blog.csdn.net/weixin_40519315/article/details/104549940
6、其他补充
unet++网络结构图如下:
在这里插入图片描述
网络初解:蓝色和绿色短跳部分就是Unet++相对UNet添加的部分。在右侧有L1, L2等为后面剪枝后的各个模型。
https://blog.csdn.

### UNet+++ 模型代码实现与复现教程 #### GitHub资源链接 对于希望获取UNet+++模型的代码实现或复现教程的人而言,有多个GitHub仓库提供了详细的资料和支持。一个官方推荐的PyTorch实现可以在bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets找到[^1]。此项目不仅包含了基础的U-Net架构,还扩展到了更复杂的变体如RCNN-U-net, Attention U-net等。 另一个重要的资源来自ZJUGiveLab/UNet-Version,该库专注于提供多种版本的U-Net及其衍生模型(包括UNet+++, 注意力机制增强版)的具体实现方法[^5]。这些资源非常适合那些想要深入了解并尝试不同改进方案的研究人员和技术爱好者们。 #### 实战指南与解释文档 为了帮助理解如何实际操作以及背后的设计理念,在CSDN博客上有一系列文章深入浅出地介绍了UNet+++的关键概念和重点代码片段。通过阅读这些材料,读者可以获得关于为什么某些设计决策被采纳的第一手见解,并学习到最佳实践技巧来优化自己的项目开发过程。 #### TensorFlow/Keras实现 除了上述提到的主要针对PyTorch框架的内容外,MrGiovanni/UNetPlusPlus则是一个专门为TensorFlow用户提供服务的开源项目[^2]。它实现了原始论文中的UNet++算法,并附带了详尽的例子说明怎样训练模型处理医学图像数据集等问题。虽然这不是严格意义上的UNet+++,但对于熟悉Keras/TensorFlow环境的人来说仍然是非常有价值的参考资料之一。 ```python import torch.nn as nn class UNetBlock(nn.Module): """Basic block used within the UNet architecture.""" def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3), nn.ReLU(inplace=True), nn.BatchNorm2d(out_channels)) def forward(self, x): return self.conv(x) def build_unetppp_model(): """ Constructs a simplified version of the UNet+++ model. Note that this is not an exact implementation but serves to illustrate key components. For full details please refer to official repositories or publications. """ pass # Placeholder function body; actual construction would involve stacking multiple blocks with skip connections etc. if __name__ == "__main__": # Example usage when running script directly (not recommended for production code) from torchvision import models net = build_unetppp_model() print(net) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值