AI实战:基于深度学习的目标检测算法汇总:SSD、YOLO系列、FPN

本文汇总了基于深度学习的目标检测算法,包括SSD、YOLO系列及FPN等,详细介绍了各算法的特点与应用,如YOLOv3的复杂骨干网络与特征金字塔,SSD的多尺度特征图独立检测,以及FPN的自下而上和自上而下路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言


上一篇文章:
AI实战:基于深度学习的目标检测算法汇总:R-CNN系列 (R-CNN、Fast R-CNN、Faster R-CNN)

本文继续基于深度学习的目标检测算法汇总:SSD、YOLO系列


SSD


  • SSD的流程图:

    在这里插入图片描述
    在这里插入图片描述

  • 要点:

    • 采用多尺度特征图独立检测

  • 源码分享

    • A Keras port of Single Shot MultiBox Detector :点击查看

    • SSD in TensorFlow: Traffic Sign Detection and Classification: 点击查看



YOLO系列


  • YOLO的流程图

    在这里插入图片描述

  • 要点

    • YOLO 在卷积层之后使用了 DarkNet 来做特征检测。
    • YOLOv2 可以处理不同分辨率的输入图像。
    • YOLOv3 使用了更加复杂的骨干网络来提取特征。DarkNet-53 主要由 3 × 3 和 1× 1 的卷积核以及类似 ResNet 中的跳过连接构成。
    • YOLOv3 还添加了特征金字塔,以更好地检测小目标。

  • 源码分享

    keras-yolo3:点击查看

    YOLOv3( tensorflow Implement ):点击查看

    YOLO_tensorflow:点击查看

    yolov2_tensorflow:点击查看


FPN(特征金字塔网络)

  • FPN的流程图:

    在这里插入图片描述- 要点

    • FPN 由自下而上和自上而下路径组成。
    • 其中自下而上的路径是用于特征提取的常用卷积网络。空间分辨率自下而上地下降。
    • 当检测到更高层的结构,每层的语义值增加。
        在这里插入图片描述
  • 源码分享

    Feature Pyramid Networks for Object Detection(caffe):点击查看

    Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection:点击查看

    Feature Pyramid Networks for Object Detection:点击查看

    FastFPN: 点击查看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szZack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值