AI实战:2019、2020最新的中文文本检测检测模型

2019、2020最新的中文文本检测检测模型

1、DBNet(Real-time Scene Text Detection with Differentiable Binarization)

  • 论文地址:https://arxiv.org/pdf/1911.08947.pdf

  • 作者:华中科技大学 Minghui Liao 1∗ , Zhaoyi Wan 2∗ , Cong Yao 2 , Kai Chen 3,4 , Xiang Bai 1

  • 网络结构
    在这里插入图片描述

  • 创新点
    在基于分割的文本检测网络中,最终的二值化map都是使用的固定阈值来获取,并且阈值不同对性能影响较大。本文中,对每一个像素点进行自适应二值化,二值化阈值由网络学习得到,彻底将二值化这一步骤加入到网络里一起训练,这样最终的输出图对于阈值就会非常鲁棒。

  • 开源代码:
    github:https://github.com/MhLiao/DB

  • 检测结果示例
    在这里插入图片描述

  • 测试结果

在这里插入图片描述

2、CRAFT(Character Region Awareness for Text Detection)

  • 论文地址:https://arxiv.org/pdf/1904.01941.pdf

  • 作者:Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee ∗
    Clova AI Research, NAVER Corp.

  • 网络结构
    在这里插入图片描述

  • 创新点
    利用了分割的方法,将一个字符视为一个检测目标对象,而不是一个文本框当做目标。先检测单个字符(character region score)及字符间的连接关系(affinity score),然后根据字符间的连接关系确定最终的文本行。这样做的好处在于:使用小感受野也能预测大文本和长文本,只需要关注字符级别的内容而不需要关注整个文本实例。

  • 开源代码:
    github:https://github.com/clovaai/CRAFT-pytorch

  • 检测结果示例
    在这里插入图片描述

  • 测试结果

在这里插入图片描述

3、PSENet(Shape Robust Text Detection with Progressive Scale Expansion Network)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szZack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值