2019、2020最新的中文文本检测检测模型
1、DBNet(Real-time Scene Text Detection with Differentiable Binarization)
-
论文地址:https://arxiv.org/pdf/1911.08947.pdf
-
作者:华中科技大学 Minghui Liao 1∗ , Zhaoyi Wan 2∗ , Cong Yao 2 , Kai Chen 3,4 , Xiang Bai 1
-
网络结构
-
创新点
在基于分割的文本检测网络中,最终的二值化map都是使用的固定阈值来获取,并且阈值不同对性能影响较大。本文中,对每一个像素点进行自适应二值化,二值化阈值由网络学习得到,彻底将二值化这一步骤加入到网络里一起训练,这样最终的输出图对于阈值就会非常鲁棒。 -
开源代码:
github:https://github.com/MhLiao/DB -
检测结果示例
-
测试结果
2、CRAFT(Character Region Awareness for Text Detection)
-
论文地址:https://arxiv.org/pdf/1904.01941.pdf
-
作者:Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee ∗
Clova AI Research, NAVER Corp. -
网络结构
-
创新点
利用了分割的方法,将一个字符视为一个检测目标对象,而不是一个文本框当做目标。先检测单个字符(character region score)及字符间的连接关系(affinity score),然后根据字符间的连接关系确定最终的文本行。这样做的好处在于:使用小感受野也能预测大文本和长文本,只需要关注字符级别的内容而不需要关注整个文本实例。 -
开源代码:
github:https://github.com/clovaai/CRAFT-pytorch -
检测结果示例
-
测试结果
3、PSENet(Shape Robust Text Detection with Progressive Scale Expansion Network)
-
论文地址:https://arxiv.org/abs/1806.02559
-
作者:Xiang Li, Wenhai Wang, Wenbo Hou, Ruo-Ze Liu, Tong Lu, Jian Yang
-
网络结构
-
创新点
1、提出了一种基于基于像素级别的分割的方法psenet,能够对任意形状的文本进行定位。
2、提出了一种渐进的尺度扩展算法,该算法可以成功地识别相邻文本实例。 -
开源代码:
github:https://github.com/whai362/PSENet -
其他参考:AI实战:最强文本检测模型Shape Robust Text Detection with Progressive Scale Expansion Network (PSENet)