【术语2-深度学习篇】打败99%小白!一学就会的大模型专业术语,读这一篇就够了

本文概述了人工智能领域的关键技术,包括人工神经网络(如ANN、CNN、RNN、LSTM、GRU)、深度学习模型(DNN、VAE),以及优化算法(SGD)、强化学习(RL)、预训练方法(BERT)等,展示了它们在自然语言处理(NLP)和计算机视觉(CV)中的重要角色。
缩写英文名中文名简要说明
ANNArtificial Neural Network人工神经网络由大量处理单元(神经元)相互连接而成的计算系统,模拟人脑处理信息。
CNNConvolutional Neural Network卷积神经网络一种深度学习网络,特别适用于处理具有网格结构的数据,如图像。
RNNRecurrent Neural Network递归神经网络一种处理序列数据的网络,具有记忆先前信息的能力。
LSTMLong Short-Term Memory长短期记忆网络RNN的一种,特别设计来解决普通RNN在长序列学习中的梯度消失问题。
GRUGated Recurrent Unit门控循环单元LSTM的变体之一,通过使用门控机制简化了LSTM的模型结构。
DNNDeep Neural Network深度神经网络由多个隐藏层组成的ANN,能够学习复杂的表示。
MLPMulti-Layer Perceptron多层感知器一种前馈ANN模型,含有一个或多个非线性隐藏层。
SGDStochastic Gradient Descent随机梯度下降一种优化算法,用于训练各种类型的机器学习模型,通过对随机样本的梯度来优化目标函数。
GANGenerative Adversarial Network生成对抗网络由生成器和判别器组成,通过对抗过程学习生成数据的网络。
RLReinforcement Learning强化学习一种学习策略,使得智能体通过与环境交互来学习最佳行为或策略。
BERTBidirectional Encoder Representations from Transformers双向编码器表示变压器一种预训练语言表示的方法,旨在改进自然语言处理中的多种任务。
NLPNatural Language Processing自然语言处理一门研究如何让计算机学习、理解和使用人类语言的科学。
CVComputer Vision计算机视觉一门研究如何让机器“看”和理解图像和视频数据的科学。
AEAutoencoder自编码器一种无监督学习的神经网络,通过无损压缩数据来学习数据的表示。
VAEVariational Autoencoder变分自编码器一种生成模型,使用变分推断对编码器的潜在表示进行建模。
MLPMulti-Layer Perceptron多层感知机一种前馈人工神经网络,有多层节点,每层节点与下一层全连接,节点之间无环。
ReLURectified Linear Unit线性整流单元一种常用的激活函数,能够增加模型的非线性而不影响收敛速度。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值