| 缩写 | 英文名 | 中文名 | 简要说明 |
|---|---|---|---|
| ANN | Artificial Neural Network | 人工神经网络 | 由大量处理单元(神经元)相互连接而成的计算系统,模拟人脑处理信息。 |
| CNN | Convolutional Neural Network | 卷积神经网络 | 一种深度学习网络,特别适用于处理具有网格结构的数据,如图像。 |
| RNN | Recurrent Neural Network | 递归神经网络 | 一种处理序列数据的网络,具有记忆先前信息的能力。 |
| LSTM | Long Short-Term Memory | 长短期记忆网络 | RNN的一种,特别设计来解决普通RNN在长序列学习中的梯度消失问题。 |
| GRU | Gated Recurrent Unit | 门控循环单元 | LSTM的变体之一,通过使用门控机制简化了LSTM的模型结构。 |
| DNN | Deep Neural Network | 深度神经网络 | 由多个隐藏层组成的ANN,能够学习复杂的表示。 |
| MLP | Multi-Layer Perceptron | 多层感知器 | 一种前馈ANN模型,含有一个或多个非线性隐藏层。 |
| SGD | Stochastic Gradient Descent | 随机梯度下降 | 一种优化算法,用于训练各种类型的机器学习模型,通过对随机样本的梯度来优化目标函数。 |
| GAN | Generative Adversarial Network | 生成对抗网络 | 由生成器和判别器组成,通过对抗过程学习生成数据的网络。 |
| RL | Reinforcement Learning | 强化学习 | 一种学习策略,使得智能体通过与环境交互来学习最佳行为或策略。 |
| BERT | Bidirectional Encoder Representations from Transformers | 双向编码器表示变压器 | 一种预训练语言表示的方法,旨在改进自然语言处理中的多种任务。 |
| NLP | Natural Language Processing | 自然语言处理 | 一门研究如何让计算机学习、理解和使用人类语言的科学。 |
| CV | Computer Vision | 计算机视觉 | 一门研究如何让机器“看”和理解图像和视频数据的科学。 |
| AE | Autoencoder | 自编码器 | 一种无监督学习的神经网络,通过无损压缩数据来学习数据的表示。 |
| VAE | Variational Autoencoder | 变分自编码器 | 一种生成模型,使用变分推断对编码器的潜在表示进行建模。 |
| MLP | Multi-Layer Perceptron | 多层感知机 | 一种前馈人工神经网络,有多层节点,每层节点与下一层全连接,节点之间无环。 |
| ReLU | Rectified Linear Unit | 线性整流单元 | 一种常用的激活函数,能够增加模型的非线性而不影响收敛速度。 |
【术语2-深度学习篇】打败99%小白!一学就会的大模型专业术语,读这一篇就够了
本文概述了人工智能领域的关键技术,包括人工神经网络(如ANN、CNN、RNN、LSTM、GRU)、深度学习模型(DNN、VAE),以及优化算法(SGD)、强化学习(RL)、预训练方法(BERT)等,展示了它们在自然语言处理(NLP)和计算机视觉(CV)中的重要角色。





