大家好,我是大 F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。
欢迎关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!
一、检索环节评估:三大核心指标揭示系统性能
在RAG(检索增强生成)系统中,检索模块的质量直接影响最终生成答案的准确性和可靠性。以下从排序敏感性和相关性覆盖度两个维度,详解三大核心评估指标。
1.1 MRR(平均倒数排名):首条相关结果定位器
MRR(Mean Reciprocal Rank) 是衡量系统快速定位首个相关文档能力的核心指标。其计算方式为:对每个查询的第一个相关文档排名取倒数,再对所有查询结果求平均。例如当首个相关文档出现在第2位时,该查询贡献值为1/2;若未找到相关文档则贡献值为0。
该指标的突出价值体现在搜索体验优化场景:在客服问答系统中,用户期望首条结果就能解决问题,此时MRR超过0.8意味着系统具有极强的首条命中能力。但需注意,MRR不考虑后续相关文档的质量,在需要多文档支撑的复杂问答场景中需结合其他指标使用。<
订阅专栏 解锁全文
560

被折叠的 条评论
为什么被折叠?



