【面试必背】RAG技术全面解析:从原理到实践中的20个关键问题

大家好,我是大 F,深耕AI算法十余年,互联网大厂核心技术岗。
知行合一,不写水文,喜欢可关注,分享AI算法干货、技术心得。
【专栏介绍】
欢迎关注《大模型理论和实战》《DeepSeek技术解析和实战》,一起探索技术的无限可能!

【大模型篇】更多阅读
【大模型篇】万字长文从OpenAI到DeepSeek:大模型发展趋势及原理解读
【大模型篇】目前主流 AI 大模型体系全解析:架构、特点与应用
【大模型篇 】 Grok-3 与 DeepSeek 的技术架构与性能分析
【大模型篇】速读版DeepSeek核心技术解密:与 GPT-4、Claude、LLaMA 技术路线差异对比分析

一、基础概念与原理

1. RAG是什么?与传统生成模型的区别是什么?

RAG定义

检索增强生成(Retrieval-Augmented Generation, RAG) 是一种结合检索技术与生成模型的技术。其核心流程是:

  1. 用户提问后,系统从外部知识库(如文档、数据库)中检索相关文档片段;
  2. 将检索结果作为上下文输入大语言模型(LLM);
  3. LLM基于上下文生成最终答案。
与传统生成模型的对比
维度 传统生成模型(如GPT-3) RAG模型
知识来源 训练时的静态知识 动态检索外部知识库
实时性 无法更新(需重新训练) 支持实时更新知识库
专业性 通用回答,易产生“幻觉” 基于检索结果生成,更准确可靠
计算成本 生成复杂度高 检索+生成,部分场景更高效

示例

  • 传统模型:问“2023年诺贝尔经济学奖得主”,若训练数据截止到2021年,可能回答错误。
  • RAG模型:实时检索2023年新闻,返回正确答案“克劳迪娅·戈尔丁”。

2. 为什么RAG能有效提升大模型回答的准确性和专业性?

核心优势
  1. 动态知识补充
    • 大语言模型(LLM)的静态知识存在时效性和覆盖范围限制,RAG通过检索外部知识库实时补充最新信息。
  2. 减少幻觉(Hallucination)
    • 答案生成依赖检索内容而非模型记忆,降低虚构风险。
  3. 垂直领域适配
    • 通过检索专业文档(如法律条文、医学指南),提升领域专业性。
案例场景
  • 医疗咨询:用户提问“儿童肺炎的最新治疗指南”,RAG检索权威医学文献生成回答,避免依赖过时知识。
  • 法律咨询:直接引用《民法典》条款,确保回答合规性。

3. RAG的核心流程包含哪些阶段?各阶段的作用是什么?

核心三阶段流程
  1. 索引构建(Indexing)
    • 作用:将知识库预处理为可检索的结构化数据。
    • 步骤
  • 数据清洗(去噪、格式化);
  • 分块(Chunking,按段落或语义分割);
  • 生成Embedding(文本向量化);
  • 存储到向量数据库(如Milvus、Pinecone)。
  1. 检索(Retrieval)
    • 作用:从知识库中找到与用户问题最相关的文档片段。
    • 步骤
  • 用户Query生成Embedding;
  • 计算与文档片段的相似度(余弦相似度);
  • 返回Top-K结果(如Top 5相关段落)。
  1. 生成(Generation)
    • 作用:基于检索结果生成最终答案。
    • 步骤
  • 拼接检索结果为上下文;
  • 输入LLM(如GPT-4、ChatGLM)生成回答;
  • 后处理(引文标注、答案校验)。

流程图示例

  
用户提问 → 检索相关文档 → 拼接上下文 → LLM生成 → 返回答案  
<
### RAG技术的工作原理 RAG(Retrieval-Augmented Generation)是一种结合检索和生成的技术框架,旨在提升自然语言处理任务中的性能。其核心思想是通过引入外部知识源,在生成过程中增强模型的表现力[^1]。 #### 景与概念 RAG的核心在于将传统的纯生成模式转变为一种混合模式——即先从外部知识库中检索相关信息,再基于这些信息生成最终的结果。这种方法能够有效缓解传统生成模型可能存在的幻觉问题(hallucination),并提高生成内容的相关性和准确性[^2]。 #### 实现步骤详解 以下是RAG技术的主要实现过程: 1. **调用大语言模型** 使用预训练的大规模语言模型(如ChatGPT、GLM等)作为基础架构,负责后续的文本生成任务。这一阶段通常依赖于强大的上下文理解能力以及高效的参数化结构。 2. **读取知识库数据** 构建或接入一个大规模的知识库,该知识库可以是以文档形式存储的数据集或者经过加工后的语料集合。此部分决定了可被检索的信息范围及其质量[^3]。 3. **文本索引与答案检索** 对知识库内的文本进行预处理,并建立高效查询机制以便快速定位相关内容片段。常见的方法包括倒排索引等技术手段。 4. **文本嵌入与向量检索** 将输入问题转化为高维空间中的表示向量,并计算它与其他已知样本之间的相似度得分;随后依据得分选取最接近的一组候选对象作为潜在匹配项。 5. **文本多路召回与重排序** 经过多轮筛选后得到多个备选方案,进一步采用机器学习算法对其进行综合评估打分,最终选出最优解路径。 6. **文本问答Prompt优化** 针对具体应用场景设计合理的提示模板(Prompt Engineering),引导LLMs按照预期方向完成指定操作,比如精确回答特定领域的问题等等。 ```python import numpy as np def rag_pipeline(question, knowledge_base): """ A simplified example of the RAG pipeline. Args: question (str): The input query from user. knowledge_base (list): List of documents or passages to search through. Returns: str: Generated answer based on retrieved information. """ # Step 1: Embedding and Retrieval embeddings = generate_embeddings([question] + knowledge_base) scores = compute_similarity(embeddings[0], embeddings[1:]) top_k_indices = np.argsort(scores)[-3:] # Top-3 relevant docs # Step 2: Generate Answer with Retrieved Contexts context = "\n".join([knowledge_base[i] for i in top_k_indices]) prompt = f"Question: {question}\nContext:\n{context}" generated_answer = call_large_language_model(prompt) return generated_answer def generate_embeddings(texts): pass # Placeholder function; implement embedding generation here. def compute_similarity(query_embedding, doc_embeddings): pass # Placeholder function; calculate cosine similarity between vectors. def call_large_language_model(prompt): pass # Placeholder function; invoke LLM API using provided prompts. ``` 上述代码展示了简化版的RAG流水线逻辑,实际应用中还需要考虑更多细节和技术挑战。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值