大家好,我是大 F,深耕AI算法十余年,互联网大厂核心技术岗。
知行合一,不写水文,喜欢可关注,分享AI算法干货、技术心得。
【专栏介绍】:
欢迎关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!【大模型篇】更多阅读:
【大模型篇】万字长文从OpenAI到DeepSeek:大模型发展趋势及原理解读
【大模型篇】目前主流 AI 大模型体系全解析:架构、特点与应用
【大模型篇 】 Grok-3 与 DeepSeek 的技术架构与性能分析
【大模型篇】速读版DeepSeek核心技术解密:与 GPT-4、Claude、LLaMA 技术路线差异对比分析
一、基础概念与原理
1. RAG是什么?与传统生成模型的区别是什么?
RAG定义
检索增强生成(Retrieval-Augmented Generation, RAG) 是一种结合检索技术与生成模型的技术。其核心流程是:
- 用户提问后,系统从外部知识库(如文档、数据库)中检索相关文档片段;
- 将检索结果作为上下文输入大语言模型(LLM);
- LLM基于上下文生成最终答案。
与传统生成模型的对比
维度 | 传统生成模型(如GPT-3) | RAG模型 |
---|---|---|
知识来源 | 训练时的静态知识 | 动态检索外部知识库 |
实时性 | 无法更新(需重新训练) | 支持实时更新知识库 |
专业性 | 通用回答,易产生“幻觉” | 基于检索结果生成,更准确可靠 |
计算成本 | 生成复杂度高 | 检索+生成,部分场景更高效 |
示例:
- 传统模型:问“2023年诺贝尔经济学奖得主”,若训练数据截止到2021年,可能回答错误。
- RAG模型:实时检索2023年新闻,返回正确答案“克劳迪娅·戈尔丁”。
2. 为什么RAG能有效提升大模型回答的准确性和专业性?
核心优势
- 动态知识补充:
- 大语言模型(LLM)的静态知识存在时效性和覆盖范围限制,RAG通过检索外部知识库实时补充最新信息。
- 减少幻觉(Hallucination):
- 答案生成依赖检索内容而非模型记忆,降低虚构风险。
- 垂直领域适配:
- 通过检索专业文档(如法律条文、医学指南),提升领域专业性。
案例场景
- 医疗咨询:用户提问“儿童肺炎的最新治疗指南”,RAG检索权威医学文献生成回答,避免依赖过时知识。
- 法律咨询:直接引用《民法典》条款,确保回答合规性。
3. RAG的核心流程包含哪些阶段?各阶段的作用是什么?
核心三阶段流程
- 索引构建(Indexing):
- 作用:将知识库预处理为可检索的结构化数据。
- 步骤:
- 数据清洗(去噪、格式化);
- 分块(Chunking,按段落或语义分割);
- 生成Embedding(文本向量化);
- 存储到向量数据库(如Milvus、Pinecone)。
- 检索(Retrieval):
- 作用:从知识库中找到与用户问题最相关的文档片段。
- 步骤:
- 用户Query生成Embedding;
- 计算与文档片段的相似度(余弦相似度);
- 返回Top-K结果(如Top 5相关段落)。
- 生成(Generation):
- 作用:基于检索结果生成最终答案。
- 步骤:
- 拼接检索结果为上下文;
- 输入LLM(如GPT-4、ChatGLM)生成回答;
- 后处理(引文标注、答案校验)。
流程图示例:
用户提问 → 检索相关文档 → 拼接上下文 → LLM生成 → 返回答案
<