lightGBM自定义损失函数loss和metric

博客主要介绍了LightGBM自定义损失函数loss和metric的方法,给出了自定义损失函数self_loss和评估指标self_metric的Python代码实现,还涉及多分类metric的相关内容,通过代码展示了如何在LightGBM训练中使用自定义的损失和评估指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

lightGBM自定义损失函数loss和metric
转载于:https://www.cnblogs.com/kayy/p/10824392.html

def self_loss(preds, train_data):

labels = train_data.get_label()

k = labels - preds

#对labels求导

grad = np.where(k>0, 2np.abs(preds)/(np.power(np.abs(labels)+np.abs(preds), 2)+0.1), -2np.abs(preds)/(np.power(np.abs(labels)+np.abs(preds), 2)+0.1))

hess = np.where(k>0, -4np.abs(preds)/(np.power(np.abs(labels)+np.abs(preds), 3)+0.1), 4np.abs(preds)/(np.power(np.abs(labels)+np.abs(preds), 3)+0.1))
#返回一阶导、二阶导
return grad, hess

def self_metric(preds, train_data):

labels= train_data.get_label()

score = 1-np.mean(np.abs(labels-preds)/(np.abs(labels)+np.abs(preds)+0.1))

return ‘self_metric’, score, True

gbm = lgb.train(params,

gb_train,

num_boost_round=3000,

valid_sets=lgb_eval,

fobj = self_loss,

feval = self_metric,

early_stopping_rounds=30)

多分类metric

def self_metric(preds, train_data):
y_label = train_data.get_label()
preds = preds.reshape(4, -1).T # 4 分类
y_pred = np.argmax(preds, axis=-1)
。。。
return ‘self_metric’, macro_F1, True

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值