1 简介
本文根据2020年《Linguistic Features for Readability Assessment》翻译总结。从标题可以看出来是进行可读性评估(Readability Assessment)。
可读性评估(Readability Assessment),早期时,如Flesch (1948年),是提取简单的文本特征,像字符数量。Schwarm and Ostendorf (2005年)分析了更广泛的特征,包括out-of-vocabulary scores和语法特征(如average parse tree heigh)。
在本文,我们评估了语言学特征和深度学习模型的联合使用。我们将神经网络的单个数字输出作为一个特征,然后和语言学特征结合,最后输入到非神经网络模型(如SVM)中,SVM作为最后的分类器
总结如下:
- 语言学特征主要对小数据集下作用明显;
- 结合了语言学特征后,一般情况下并没有改善深度学习模型的效果。可能深度学习模型已经隐含的捕捉到了可读性评估所需的特征。
2 特征
2.1 传统特征
2.2 新颖的句法特征
3 模型
- SVMs, Linear Models, and Logistic Regression
- CNN
- Transformer
- HAN:分层注意力网络,将输入通过两个双向的RNN,每个RNN采用独立的注意力机制。其中一个注意力机制关注在每个句子内的不同单词,另一个注意力机制关注文档内的不同句子。
4 实验结果
Newsela 语料库的实验结果如下:可以看到结合了语言学后(SVM with HAN and linguistic features)并没有改善深度学习模型(HAN)的效果。
在Weebit语料库上的实验结果如下,可以看到结合了语言学后(SVM with transformer, Flesch features, and linguistic features)并没有改善深度学习模型(Transformer)的效果。