[图神经网络论文]:Link Prediction Based on Graph Neural Networks

本文详细介绍了传统链接预测算法如CommonNeighbors、PreferentialAttachment等,以及它们的局限性。随后引入了基于图神经网络(SEAL)的链接预测方法,特别强调了γ衰减启发式和封闭子图在GNN中的应用,以及如何通过DGCNN进行训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统link prediction算法

经典算法

现有的启发式可以根据计算分数所需的邻居的最大跳数(k-hop)进行分类
例如:

one-hop
  • Common Neighbors 算法基于这样一个假设,即两个节点共有的邻居数量越多,它们之间存在链接的可能性就越大: C N ( u , v ) = ∣ Γ ( u ) ∩ Γ ( v ) ∣ \mathrm{CN}(u,v)=|\Gamma(u)\cap\Gamma(v)| CN(u,v)=∣Γ(u)Γ(v)其中, Γ ( v ) \Gamma(v) Γ(v)表示节点v的邻居
  • Preferential Attachment算法基于“富者更富”或“优先连接”的概念,即流行的节点(即邻居数量多的节点)更有可能在未来获得更多的链接。这个想法来源于无标度网络的成长模型,其中一些节点因为具有较高的连接度而更容易吸引新的连接: P A ( u , v ) = ∣ Γ ( u ) ∣ × ∣ Γ ( v ) ∣ \mathrm{PA}(u,v)=|\Gamma(u)|\times|\Gamma(v)| PA(u,v)=∣Γ(u)×∣Γ(v)
two-hop
  • Adamic-Adar:Adamic-Adar算法基于这样一个假设,即不是所有的共享邻居都同等重要。具体来说,如果一个共享邻居与很多其他节点相连(即度较高),那么它对于链接预测的贡献应该比度较低的邻居小。因此,AA算法倾向于给那些连接度较低的共享邻居更高的权重。 A A ( u , v ) = ∑ z ∈ Γ ( u ) ∩ Γ ( v ) 1 log ⁡ ∣ Γ ( z ) ∣ ‾ \mathrm{AA}(u,v)=\sum_{z\in\Gamma(u)\cap\Gamma(v)}\frac1{\overline{\log|\Gamma(z)|}} AA(u,v)=zΓ(u)Γ(v)log∣Γ(z)1
  • Resource Allocation:Resource Allocation算法受到物理学中的资源分配过程的启发。在这个模型中,每个节点都被视为有一定资源的实体,这些资源可以通过它们的共享邻居进行分配。如果两个节点通过共享邻居接收到更多的资源,那么它们之间存在链接的可能性就更大。RA算法假设资源的分配是均等的,不同于AA算法中对低度节点的偏好。 R A ( u , v ) = ∑ z ∈ Γ ( u ) ∩ Γ ( v ) 1 ∣ Γ ( z ) ∣ \mathrm{RA}(u,v)=\sum_{z\in\Gamma(u)\cap\Gamma(v)}\frac1{|\Gamma(z)|} RA(u,v)=zΓ(u)Γ(v)∣Γ(z)1
k-hop
  • PageRank
  • Katz index
  • SimRank

缺陷

启发式方法对何时可能存在链接有很强的假设:由于启发式算法可以看作是预先定义的图结构特征
例如,公共邻居启发式假设如果两个节点有许多公共邻居,则它们更有可能连接。这种假设在社交网络中可能是正确的,但是在交通和物流网络中,两个节点之间的连接可能更多地受到地理距离和交通便利性的影响,而与它们共享的其他节点数量关系不大。在这类网络中,基于距离和流量优化的算法可能比传统启发式算法更有效。

γ-decaying heuristic

封闭子图 enclosing graph

对于图 G = ( V , E ) G=(V,E) G=(V

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值