pytorch中的torch.manual_seed()用于生成随机数种子理解

本文介绍了在PyTorch中使用torch.manual_seed()函数来设定随机数种子,以确保神经网络初始化的可重复性。通过设置种子,可以避免因随机初始化导致的训练结果不确定性,使得实验结果可复现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.manual_seed()

在神经网络中,参数默认是进行随机初始化的。如果不设置的话每次训练时的初始化都是随机的,导致结果不确定。

如果设置初始化,则每次初始化都是固定的。

实际上,计算机并不能产生真正的随机数,而是已经编写好的一些无规则排列的数字存储在电脑里,把这些数字划分为若干相等的N份,并为每份加上一个编号,编号固定的时候,获得的随机数也是固定的。

torch.manual_seed(1)用于设置随机初始化的种子,即上述的编号,编号固定,每次获取的随机数固定。

if args.seed is not None:
      random.seed(args.seed) 
     torch.manual_seed(args
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值