在自然语言处理(NLP)领域的发展历程中,Transformer 架构的出现无疑是一个划时代的里程碑。自 Google 在 2017 年的开创性论文《Attention Is All You Need》中提出以来,Transformer 以其独特的自注意力(Self-Attention)机制彻底颠覆了传统的序列建模方式,并迅速成为 NLP 领域的主流架构。它不仅在机器翻译、文本摘要、问答系统等任务上取得了前所未有的突破,更催生了 BERT、GPT 系列等一系列预训练语言模型的诞生,从而深刻地改变了我们构建和理解 AI 语言模型的方式。
在此之前,循环神经网络(RNN)及其变体(LSTM、GRU)是处理序列数据的首选。然而,它们固有的序列依赖性限制了并行计算,并且难以捕捉长距离依赖。Transformer 的精妙之处在于,它完全抛弃了循环和卷积结构,而是纯粹依赖于注意力机制来捕捉输入序列中词语之间的关联。这种设计使得模型能够高效地并行化训练,并能够更好地处理长序列信息,从而实现了性能和效率上的双重飞跃。
本文将深入解析 Transformer 架构的核心组件、工作原理,并通过概念性代码展示其关键机制,分析其革新 NLP 任务的关键原因,旨在为读者呈现 Transformer 如何成为推动自然语言处理乃至整个深度学习领域向前发展的强大引擎。
1. 传统序列模型(RNN/LSTM)的痛点
在 Transformer 出现之前,处理序列数据主要依赖