在深度学习,特别是自然语言处理(NLP)领域,注意力机制(Attention Mechanism) 已经成为核心。自 Transformer 架构提出以来,自注意力(Self-Attention)机制以其强大的序列建模能力彻底改变了 NLP 面貌,并催生了 BERT、GPT 等一系列巨型预训练模型。然而,标准自注意力机制的计算复杂度是序列长度 N N N 的平方级别,即
在深度学习,特别是自然语言处理(NLP)领域,注意力机制(Attention Mechanism) 已经成为核心。自 Transformer 架构提出以来,自注意力(Self-Attention)机制以其强大的序列建模能力彻底改变了 NLP 面貌,并催生了 BERT、GPT 等一系列巨型预训练模型。然而,标准自注意力机制的计算复杂度是序列长度 N N N 的平方级别,即