自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(594)
  • 资源 (12)
  • 收藏
  • 关注

原创 BEV和OCC学习-2:mmdet3d 安装测试

我的cuda版本是11.7,选择安装mmdet3d 版本是v1.2.0,按照官方教程安装mmcv相关版本会报错,按照以下安装步骤正常。

2025-05-28 15:07:22 421

原创 BEV和OCC学习-1:数据集以及评估指标

三种难度等级:Easy Moderate Hard。2. AI:亚马逊 李沐Ai 莫凡python。

2025-05-28 11:20:36 828

原创 常用的深度估计数据集

常用的深度估计数据集

2025-02-21 15:29:54 1316

原创 CLOCs网络结构

在3D目标检测领域,目前的fusion普遍都是deep fusion,效果不如纯lidar的方法。一个原因是由于camera和lidar两个传感器对物理世界的描述属于不同的视角(FV vs BEV)、不同的表征方式(rgb VS xyzi)、不同的存储方式(规则uv VS 无序),融合特征是否能很好的表征目标这是个问题;另外就是融合的算法在数据增强方面也有限制,不太好做数据增强。在决策层面的融合相对简单很多,不需要考虑在信息层面的融合和互补,对结果做决策上的选择融合。

2025-02-18 09:47:30 288

原创 PointPainting网络结构

PointPainting以“将LIDAR的BEV视角和camrea视角信息整合起来”为出发点,其核心思想为:每个LIDAR点被投影到一个图像语义分割网络的输出中进行点云“上色”,Painted后的点云可用于任何LIDAR检测方法,既没有对3D检测框架的限制,也没有特征或深度模糊的问题;PointPainting是按顺序设计的,因此不能端到端优化;

2025-02-17 15:53:42 218 1

原创 AVOD网络结构

AVOD(Aggregate View Object Detection)算是MV3D的改进版。AVOD的3D目标检测框架,主要解决自动驾驶场景中从多模态数据(如激光雷达和相机图像)联合生成3D候选框(proposal)并检测物体的任务。AVOD核心思想提出的一种使用LIDAR点云和RGB图像特征融合的二阶段网络:区域建议网络(RPN)和二级检测器网络;RPN网络使用能够在高分辨率特征图上执行多模态特征融合,为道路场景中的多个目标类生成可靠的3D目标候选;

2025-02-17 14:23:50 55

原创 1×1卷积的作用

1×1卷积的核心价值在于高效调整通道维度、融合跨通道信息并引入非线性,同时保持空间结构不变。它是现代CNN中实现轻量化、模块化设计的关键组件之一。

2025-02-07 17:39:38 799

原创 MV3D网络结构

MV3D提出一种融合 RGB 和 Point Cloud的3D目标检测框架。 同时,和以往基于voxel的方法不同,它只用了点云的俯视图和前视图,这样既

2025-01-22 17:06:44 881

原创 PV-RCNN、PV-RCNN++ 网络结构

PV-RCNN的提出是想要综合 point-based 和 voxel-based 3D目标检测方法的优势:既要尽可能保留原始点的精确位置信息,又要降低运算消耗。Voxel & Point based Method 点和体素方法的结合:实现了更高的识别性能和可控的内存消耗。Voxel-based 体现在3D稀疏CNN场景编码的过程中,将场景转换为多种尺度的特征空间,并且生成了高品质的预选框。

2025-01-22 10:20:51 984

原创 PointPillars网络结构

PointPillars是一种新型的点云编码方法,通过将3D点云转化为2D伪图像进行目标检测,避免了3D卷积的计算复杂性‌‌1。PointPillars的主要贡献在于提出了一种将点云转换为伪图像的方法,并利用2D卷积神经网络(CNN)进行目标检测,从而在速度和精度上达到了很好的平衡‌。核心思路PointPillars的核心思想是将3D点云转换为2D伪图像,然后使用2DCNN进行处理。PointPillars其实延续了VoxelNet和SECOND的思路。

2025-01-20 16:20:45 900

原创 OpenPCDet 模块解析(以kitti数据+SECOND为例)-2

经过该类处理后我们最终可以得到三个类别的anchor,维度都是[z,y,x,num_size,num_rot,7],其中num_size是每个类别有几个尺度(1个);从上面流程可以看出对每个anchor进行回归和分类,得到了每个点为中心所产生anchor的类别预测结果,方向分类结果,box回归结果。但每个anchor是如何产生的呢?②每个anchor被指定九个信息,其中包含两个one-hot向量,一个用于方向分类,一个用于类别分类,还有一个七维的向量(x,y,z,dx,dy,dz,rot)。

2025-01-20 11:48:38 1044

原创 OpenPCDet 模块解析(以kitti数据+SECOND为例)-1

OpenPCDet架构流程如图,接下来我们将以second模型为例,以kitti数据集说明模型总体处理流程。主要包括:数据增强、数据预处理、模型构建、后处理、训练、测试等。

2025-01-17 18:16:58 1097 1

原创 SECOND: Sparsely Embedded Convolutional Detection

SECOND创新点

2025-01-17 11:59:19 721

原创 VoxelNet网络结构

VoxelNet网络结构

2025-01-17 10:29:27 783

原创 PointRCNN网络结构

PointRCNN网络结构

2025-01-15 17:31:26 1065

原创 基于PCDet+KITTI:训练测试PointRCNN

基于PCDet+KITTI训练测试PointRCNN

2025-01-15 14:07:56 288

原创 OpenPCdet环境配置+kitti预处理pkl文件解析

OpenPCdet环境配置+kitti预处理pkl文件解析

2025-01-15 11:09:08 935

原创 PointNet++

PointNet++设计思路以及网络结构

2025-01-14 11:15:08 1319

原创 PointNet

PointNet设计思路以及网络架构

2025-01-14 09:29:46 1176

原创 3D目标检测数据集——Nusence坐标变换

Nusence坐标转换

2025-01-13 13:56:26 489

原创 3D目标检测数据集——Nusence数据集

Nusence数据集

2025-01-13 13:50:18 567

原创 3D目标检测数据集——Waymo数据集

Waymo Open Dataset是Waymo公司为了促进自动驾驶技术、机器感知和相关领域的研究而公开发布的一个大型数据集。该数据集包含了Waymo自动驾驶车队在多个城市和郊区环境中收集的高分辨率传感器数据,涵盖了白天和夜晚、晴天和雨天等多种天气和光照条件下的驾驶场景。Waymo 数据集包含 3000 段驾驶记录,时长共16.7小时,平均每段长度约为 20 秒。

2025-01-13 11:48:40 1107

原创 3D目标检测数据集——kitti数据集

KITTI数据集

2025-01-10 19:00:04 1122

原创 Ubuntu the function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Cocoa support

he function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Cocoa support

2024-08-07 10:38:58 440

原创 基于Open3D的点云处理24-ICP匹配cuda加速

参考:docs/jupyter/t_pipelines/t_icp_registration.ipynb。

2024-06-01 22:02:33 934

原创 基于Open3D的点云处理23-Web可视化

首先在本地或远程计算机上启动可视化服务器,然后可以从任何具有现代浏览器的设备上查看3D 模型。Web 可视化服务器和客户端通过WebRTC(Web 实时通信)协议进行通信。将Open3D Web 可视化服务器作为独立应用程序运行,并在浏览器中查看3D 模型。它同时支持C++ 和Python。测试如下:examples/python/visualization/draw_webrtc.py。Open3D Web 可视化工具可在现代浏览器中实现3D 模型的高级渲染和可视化。

2024-06-01 21:35:26 675

原创 基于Open3D的点云处理22-非阻塞可视化/动态可视化

官网测试用例:examples/python/visualization/non_blocking_visualization.py。非阻塞可视化,即实时更新点云数据;

2024-06-01 21:28:54 449

原创 基于Open3D的点云处理21-交互式可视化

【代码】基于Open3D的点云处理21-交互式可视化。

2024-06-01 17:42:09 494

原创 基于Open3D的点云处理20- 基于Visualizer类自定义可视化

change_field_of_view在当前的FoV下添加了指定的FoV。如设置90度,这将会在默认的60°上添加90°的FoV,当超过最大的FoV时,FoV将会被设置为90°。小于5度的话,FOV将会被设置为5°;函数draw_geometries_with_animation_callback将Python的回调函数rotate_view注册为主循环的空闲函数。当可视化窗口处于空闲状态的时候,将沿着Y轴旋转。这样就定义了动画行为。默认的可视化具有60°的FoV;视角可以设置为[5,90]度;

2024-06-01 16:20:12 402

原创 录制gif 强推LICEcap

官网:https://www.cockos.com/licecap/即按即用,录制好的gif可直接插入博客,yyds~

2024-06-01 15:46:16 280

原创 基于Open3D的点云处理19-模拟生成点云

模型采样+增加噪声:即使用官方提供的模型或者已有模型作为base,在此基础上做一些后处理,比如采样、增加噪点,如下代码,增加高斯噪声;光现投射即模仿传感器的一个扫描视角生成对应的点云,如模拟相机成像模型;BlenSor下载:https://www.blensor.org/结果如下:变成带毛刺的犰狳了。具体使用等下一贴~~

2024-05-26 20:08:23 549

原创 在vscode中配置git bash终端、git 源码管理

vscode 配置 git bash

2023-10-16 15:03:50 2398 1

原创 NVIDIA DALI学习:数据加载

dali 加载数据

2023-09-17 14:25:29 724

原创 基于Open3D的点云处理18-重建系统

open3d 重建系统

2023-09-10 15:47:56 886

原创 基于Open3D的点云处理17-Open3d的C++版本

基于Open3D的点云处理17-Open3d的C++版本

2023-09-03 10:55:35 463

原创 基于Open3D的点云处理16-特征点匹配

open3d 基于icp、color icp、fpfh等进行点云匹配

2023-09-02 22:52:24 2994

原创 基于Open3D的点云处理15-特征点

open3d 关键点 特征

2023-08-06 00:03:33 534

原创 基于Open3D的点云处理14-法向量

open3d 法向量

2023-08-05 23:25:12 850

原创 基于Open3D的点云处理13-分割

Open3d 平面分割 聚类分割

2023-07-30 13:21:19 627

原创 基于Open3D的点云处理12-体素化

open3d 体素化

2023-07-30 12:57:30 2417

1-【清华大学第一版】DeepSeek 从入门到精通.pdf

DeepSeek 从入门到精通

2025-02-21

DeepSeek 15天指导手册-从入门到精通

DeepSeek 15天指导手册-从入门到精通

2025-02-21

如何零成本云端部署deepseek模型

如何零成本云端部署deepseek模型

2025-02-21

清华大学第二版-DeepSeek赋能职场

清华大学第二版-DeepSeek赋能职场

2025-02-21

清华大学DeepSeek+DeepResearch:让科研像聊天一样简单

清华大学DeepSeek+DeepResearch:让科研像聊天一样简单

2025-02-21

清华大学-普通人如何抓住DeepSeek红利

清华大学-普通人如何抓住DeepSeek红利

2025-02-21

自动驾驶中的三维目标检测算法研究综述-2024年11月

本文回顾了近两年内的新兴成果并针对该方 向中的前沿理论进行系统性的阐述。首先,简单介绍三维目标检测的背景知识并回顾相关的综述研究。然后,从数 据规模、多样性等方面对 KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)等多个 流行的数据集进行了归纳总结,并进一步介绍相关基准的评测原理。接下来,按照传感器类型和数量将最近的几十 种检测方法划分为基于单目的、基于立体的、基于多视图的、基于激光雷达的、基于多模态5个类别,并根据模型架 构或数据预处理方式的不同对每一种类别进行更深层次的细分。在每一种类别的方法中,首先对其代表性算法进 行简单回顾,然后着重对该类别中最前沿的方法进行综述介绍,并进一步深入分析了该类别潜在的发展前景和当前 面临的严峻挑战。最后展望了三维目标检测领域未来的研究方向

2025-01-14

ModelNet40-normal-resampled-part2

3D物体识别数据集ModelNet40_normal_resampled,包含40个类别的3D模型,每个类别有55个模型;此资源为part1;

2025-01-13

ModelNet40-normal-resampled-part1

3D物体识别数据集ModelNet40_normal_resampled,包含40个类别的3D模型,每个类别有55个模型;此资源为part1;

2025-01-13

LBP-Learning-Multi-scale-Block-Local-Binary-Patterns-for-Face-Recognition.pdf

MB-LBP特征,全称为Multiscale Block LBP,中科院的人发明的,在Traincascade级联目标训练检测中的LBP特征使用的就是MB-LBP。

2019-05-28

International-Conference-on-Computer-Recognition-Systems CORES 2013

论文集,包括论文Data preprocessing with GPU for DBSCAN

2018-12-14

电路板直线、圆、缺陷检测

利用opencv 距离变换函数,进行直线检测,并标记缺陷;并用opencv 函数进行圆检测

2018-12-06

vs2015-x64-release下编译glog

vs2015-x64-release下编译glog,自测可用;如果想要debug,模式下的,可在现项目下更改属性后编译

2018-12-05

Edge Based Template Matching.pdf

原文链接https://www.codeproject.com/Articles/99457/Edge-Based-Template-Matching; 其中vs2015+opencv3.3版code:https://download.csdn.net/download/zfjbit/10732568

2018-10-19

GeoMatch_src(VS2015+OpenCv3.3版)

GeoMatch_src(VS2015+OpenCv3.3版本) 针对https://www.codeproject.com/KB/graphics/Edge_Based_template_match/GeoMatch_src.zip 源码,在Vs2015+opencv3.3 环境下,修改调试ok

2018-10-19

VisionPro_Shape Finding Tools

VisionPro_Shape Finding 帮助文档,英文版说明直线、圆、椭圆的查找

2018-10-18

cuda 权威指南习题答案及coda

cuda 权威指南习题答案pdf,以及在Linux code!!!!

2018-07-20

Xilinx_Vivado_SDK_Web_2018.1_0405_1_Win64

最新版,Xilinx_Vivado_SDK_Web_2018.1_0405_1_Win64 。

2018-04-26

Xilinx_Vivado_SDK_2016.4_0124_1_Win64.exe

Xilinx Vivado SDK 2016.4_0124_1_Win64,已验证可用。

2018-04-26

LK光流算法总结

LK光流算法

2016-07-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除