Nanodet训练自己的数据集并转为onnx和mnn

该博客介绍了如何使用NanoDet框架进行目标检测,包括创建XML数据集,配置训练和验证路径,调整config文件,搭建conda环境,安装依赖,训练模型,最后将模型转换为ONNX和MNN格式。详细步骤涵盖了从数据预处理到模型部署的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 准备训练的数据

在这里插入图片描述
train 和 valid 下的两个子目录分别存放训练集和验证集的图片和xml文件(注意图片和标签一一对应)

2. 建立config yaml文件

源码下载:
git clone https://github.com/RangiLyu/nanodet.git

参考https://github.com/RangiLyu/nanodet/blob/main/config/nanodet_custom_xml_dataset.yml
在config文件夹下建立自己的yml文件:
(1)修改训练结果的保存路径
在这里插入图片描述
(2)修改自训练类别数量
在这里插入图片描述
(3)修改自训练类别标签
在这里插入图片描述
(4)修改训练集和验证集的文件夹路径
在这里插入图片描述
(5)修改训练的循环次数
在这里插入图片描述

3. 配置nanodet环境

(1)Create a conda virtual environment and then activate it.

 conda create -n nanodet python=3.8 -y
 conda activate nanodet

(2)Install pytorch

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

(3)Install requirements

pip install -r requirement.txt
pip install pytorch_lightning
pip install termcolor
pip install opencv-python-headless

(4)Setup NanoDet

cd nanodet
python setup.py develop

4. 训练

python ./tools/train.py ./config/mydata.yml

5. 模型转为onnx

使用nanodet源码提供的转换脚本

python ./tools/export_onnx.py --cfg_path ./config/mydata.yml --model_path./workspace/nanodet_m_ws/model_best/nanodet_model_best.pth --out_path ./workspace/nanodet_m_ws/model_best/nanodet_m_ws.onnx

6. 模型转为mnn

MNN版本2.0.0,MNN_BUILD_CONVERTER 设置为true,编译模型转换工具,使用以下命令将onnx转为mnn:

./MNNConvert -f ONNX --modelFile xxx.onnx --MNNModel xxx.mnn --bizCode MNN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JoannaJuanCV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值