
临床预测模型
文章平均质量分 85
凑齐六个字吧
热爱医学和数据科学,站在巨人的肩膀上,学习和整理相关的知识。公众号:生信方舟
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Apriori关联分析学习(arules包)
R语言中的arules包系列为表示、处理和分析事务数据与模式提供了基础架构,基于频繁项集(frequent itemsets)和关联规则(association rules)进行挖掘。该包不仅实现了多种兴趣度量指标和关联规则挖掘算法,还集成了Christian Borgelt提供的高效Apriori和Eclat C语言实现版本的代码。原创 2025-07-14 23:38:07 · 240 阅读 · 0 评论 -
临床预测模型-中位随访和生存时间区别及R语言计算
中位生存时间≠中位随访时间原创 2025-01-19 23:35:34 · 2312 阅读 · 0 评论 -
SHAP (SHapley Additive exPlanations)及kernelshap预测单样本/全局情况和shapviz可视化学习
SHAP,kernelshap和shapviz学习原创 2025-01-10 15:00:15 · 1360 阅读 · 0 评论 -
SHAP (SHapley Additive exPlanations)及DALEX预测单样本变量情况和shapviz可视化学习
SHAP (SHapley Additive exPlanations), DALEX,shapviz学习原创 2025-01-04 23:35:28 · 1607 阅读 · 0 评论 -
临床预测模型—基于dcurves包的临床决策曲线(DCA)绘制学习
基于dcurves包的临床决策曲线(DCA)绘制学习原创 2024-11-24 13:51:17 · 1492 阅读 · 0 评论 -
临床预测模型—C指数(C-index)和时间ROC(timeROC)曲线绘制学习
C指数(C-index)和时间ROC(timeROC)曲线绘制原创 2024-11-22 22:30:04 · 1031 阅读 · 0 评论 -
临床预测模型-静态诺模/列线图(Nomogram)+校准曲线(Calibration)分析学习
静态诺模/列线图(Nomogram)+校准曲线(Calibration)分析学习原创 2024-11-10 13:27:19 · 2830 阅读 · 0 评论 -
临床预测模型/机器学习-偏最小二乘回归plsRcox算法学习
偏最小二乘回归plsRcox算法学习原创 2024-11-06 09:32:58 · 496 阅读 · 0 评论 -
临床预测模型/机器学习-生存分析支持向量机SVM(survivalsvm)算法学习
生存分析支持向量机SVM(survivalsvm)算法学习原创 2024-11-05 11:13:27 · 1600 阅读 · 0 评论 -
临床预测模型/机器学习-随机森林树RSF(RandomForest/RandomForestSRC)算法学习
随机森林树RSF(RandomForest/RandomForestSRC)算法学习原创 2024-11-04 15:16:03 · 2228 阅读 · 0 评论 -
临床预测模型/机器学习-Coxboost算法学习
coxboost算法学习原创 2024-11-03 23:31:23 · 1804 阅读 · 0 评论 -
多重共线性检测—相关性系数矩阵和方差膨胀系数(VIF)分析学习
多重共线性(Multicollinearity) 是在多元线性回归分析中经常遇到的一个问题,它发生在当两个或更多的预测变量(自变量)在统计模型中高度相关。原创 2024-09-04 11:00:52 · 7024 阅读 · 0 评论 -
临床预测模型概述6-统计模型实操-Lasso回归
基础知识回顾:简单回顾一下, Lasso是一种回归分析方法,通过引入L1正则化(惩罚)项对模型参数进行约束,从而实现变量选择和模型的正则化。Lasso回归通过最小化预测误差和惩罚项的和,能够将,适用于高维数据分析,帮助防止模型过拟合。其惩罚强度由参数λ控制,。通常该方法用于(大量的基因数据/临床参数等),有时候也可以用于。Lasso回归可以使用实现,研究者对该包的介绍为:Glmnet 是一个用于拟合广义线性模型和类似模型的R语言包,通过带有惩罚项的最大似然估计来实现。原创 2024-08-09 14:45:30 · 2554 阅读 · 0 评论 -
临床预测模型概述6-统计模型实操-单/多因素Cox回归
基础知识回顾:接下来我们进行cox回归模型的实际操练。简单回顾一下cox回归,在各种临床/基础数据分析中,经常需要分析各种影响/危险因素对疾病/状态随着时间变化而产生的影响作用,如研究肝癌患者的生存或死亡风险如何受到不同治疗方式、年龄、饮食习惯、饮酒和抽烟等因素的影响,并探索这些因素随时间变化的作用机制。再简单的说就是,不同影响因素,对肝癌患者发生死亡事件在一段时间上发生的概率的影响作用。原创 2024-08-08 14:59:55 · 1640 阅读 · 0 评论 -
临床预测模型概述6-统计模型实操-单/多因素Logistic回归
既往推文已经介绍过了logistic,cox,lasso回归(https://mp.weixin.qq.com/s/pXRZ1rYUr3lwH5OlDeB0_Q),接下来将重点进行代码的实操。首先进行logistic模型的实际操练,简单回顾一下二项logistic回归(因为还有多项的hhh),其是指研究二分类结果与一些影响因素之间关系的分析方法。原创 2024-08-07 22:57:16 · 1468 阅读 · 0 评论 -
临床预测模型概述5-临床预测模型评价指标(区分度,校准度和临床决策曲线)
为一个新手科研者我们在做完模型构建之后就够了吗?我们怎么知道自己构建的模型好不好呢?这个时候就需要我们找到一些方法对模型进行评价和验证了。原创 2024-05-18 23:08:51 · 5403 阅读 · 0 评论 -
临床预测模型概述4-统计模型(Logistic,Cox,Lasso)
概述3中简单介绍了我们在做预测模型前需要采用什么类型和形式的数据。那么有了数据之后,我们需要用什么方法学去做分析呢?以及分析之后我们又需要通过什么手段去验证呢?原创 2024-05-12 10:05:49 · 1934 阅读 · 0 评论 -
临床预测模型概述3-统计数据类型及预处理
在统计分析中,数据可以根据其性质和在分析中的作用被分类为几种基本类型。理解这些类型有助于决定如何处理数据并选择合适的统计方法进行分析。原创 2024-05-11 11:05:48 · 1411 阅读 · 1 评论 -
临床预测模型概述2-TRIPOD声明
为什么需要TRIPOD声明:简单来说是目前临床领域涌现了大量的预测模型,但这些模型真正能够具有泛化作用的仅是少数的。与预测模型最密切相关的2个指南是 肿瘤标志物研究 (REMARK) 和 遗传风险预测研究(GRIPS)。然而,REMARK 清单的重点主要是预后因素而不是预测模型,而 GRIPS 声明旨在使用遗传风险因素和处理大量遗传变异的具体方法学问题进行风险预测。因此迫切需要一个标准的流程来规范模型的建立和验证。原创 2024-05-10 16:56:52 · 2273 阅读 · 0 评论 -
临床预测模型概述1-基于TRIPOD声明
临床预测模型,又可称“预后模型(prognostic models)”、“风险评分(risk scores)”或“预测规则(prediction rules)”,是医疗领域中用于估算特定医疗结果发生的概率的工具。原创 2024-05-07 09:54:20 · 1770 阅读 · 1 评论