autoware中pure_pursuit控制和MPC控制解析

本文深入解析了自动驾驶系统中跟踪控制的原理与实现方法,重点介绍了纯跟踪算法与模型预测控制(MPC)在横向控制和纵向控制的应用。通过车辆运动学模型,特别是考虑转向角变化率的自行车模型,阐述了未来状态量的递推过程与优化目标函数的设计,并讨论了输出控制量的滤波技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自动驾驶中的跟踪控制

自动驾驶系统中控制模块的主要作用:首先获取车辆自主决策和轨迹规划的结果,在车辆的运动学和动力学约束下计算相应的控制指令,包含加速、制动、转向等,接着发布控制指令到车辆底盘执行器,从而可靠、精准地跟踪期望轨迹。

跟踪控制分为纵向控制和横向控制。

纵向控制:是对车辆纵向运动状态的控制,实现自动驾驶车辆对规划轨迹上的各点速度跟踪或者与前车保持安全距离。

横向控制:是对车辆的转向控制,要求系统可以基于定位、感知模块获取当前车辆位置与预期位置的横向误差,然后改变车辆的转向角度实现车辆对目标路径的自主跟踪。

目前应用较多的控制算法有PID控制、滑膜控制、前馈-反馈控制、预瞄跟踪控制和神经网络控制算法等。这些方法对参数和环境的依赖程度较高,当环境发生较大变化时,不能很好地完成新状态下的轨迹跟踪;同时,地面无人车辆在运动过程中受到运动学和执行机构的约束,在高速运动情况下还需要考虑相应的动力学约束,上述方法难以处理这些约束,由于基于模型预测控制的轨迹跟踪算法对未来轨迹的预测和处理多目标约束条件的能力较强,故成为研究的热点。

纯跟踪算法推导及应用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

车辆运动学自行车模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

考虑转向角变化率的车辆运动学自行车模型

在这里插入图片描述
在这里插入图片描述

未来状态量的递推

在这里插入图片描述
在这里插入图片描述

优化目标函数

在这里插入图片描述
在这里插入图片描述

输出控制量的滤波

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhagnchegn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值