OpenCV小孔圆心定位

前面写的使用改进的最小二乘法拟合缺陷圆效果很好,但在小孔的圆心定位上效果大相径庭,原因可能是小孔边缘点坐标数少,同时小孔变形的影响也很大。在王术彬的论文《基于几何特征的圆心定位方法研究与应用》中学到两种方法。
一、直角三角形法
通过在圆内找到一个内接直角三角形,利用斜边的中点为圆心,斜边的一半为半径的性质实现小孔定位。
步骤:

  1. 随机找一个点为A,但最好是第 n / 3 个点,避免所选点位于水平和垂直线上,导致找不到后面两点;
  2. 沿A的 x 方向寻找垂直的B点;
  3. 沿A的 y 方向寻找水平的C点;
  4. 计算B、C点间的中点为圆心,距离为直径。
    在这里插入图片描述
    但该方法易受孔大小的限制,当孔过小时不能找到合适的B、C点,且只适用于完整圆中。

二、中垂线法
利用圆上三点可以构造两条弦,分别做弦的中垂线,两线交点即为圆心,求得半径。
步骤:

  1. 可取第一点为A,第 n / 3个点为B,第 2 * n / 3个点为C点;
  2. 求取两线的斜率和线上一点;
  3. 推导出交点计算公式,利用公式计算圆心:
	x = double(y2 - y1 + k1 * x1 - k2 * x2) / (k1 - k2);
	y = k1*(x - x1) + y1;

在这里插入图片描述
该方法较直角三角形法,计算稍微复杂,但适用范围更广。

三、结果显示
在这里插入图片描述

<think>嗯,用户问的是关于使用算法进行D435i相机内参校准的问题,特别是如何提取图像的特征点,如何计算参数以及迭代过程。首先,我需要回忆一下相机标定的基本知识。D435i是Intel的一款深度相机,内参校准通常涉及确定相机的内部参数,比如焦距、主点坐标、畸变系数等。 用户提到的特征点提取,传统方法中最常用的是棋盘格角点作为特征点。所以可能首先需要准备一个棋盘格标定板,然后让相机从不同角度拍摄多张棋盘格图片。然后通过OpenCV中的findChessboardCorners函数来检测角点。这些角点的位置会被用来计算相机的内参。 接下来,计算参数的过程应该涉及到相机的成像模型,比如小孔成像模型,以及考虑畸变模型,比如径向畸变和切向畸变。利用这些检测到的特征点坐标,结合它们在标定板上的实际三维坐标,可以建立方程组,使用最小二乘法等方法求解内参矩阵和畸变系数。可能还需要使用Levenberg-Marquardt这样的优化算法来迭代优化参数,使得重投影误差最小化。 关于迭代过程,可能是在标定过程中,算法不断调整内参和畸变系数,使得预测的投影点与实际检测到的特征点之间的误差逐步减小。每次迭代都会计算误差,并根据误差调整参数,直到收敛到某个阈值或者达到最大迭代次数。 不过,用户可能想知道更具体的步骤,比如具体使用哪些特征点,除了棋盘格之外是否有其他方法,比如使用圆形网格或者AprilTag等。但一般来说,棋盘格是最常见的。另外,D435i可能支持自动校准,但用户可能更关心底层算法原理。 可能需要确认特征点提取的具体方法,比如角点检测的亚像素细化,以及如何将2D图像点与3D世界坐标对应。此外,在标定过程中,多个视角的图像数据如何被综合使用,通过张正友标定法这样的方法求解参数。 可能还需要解释重投影误差的概念,即通过当前估计的参数将3D点投影到图像平面,计算与检测到的特征点的距离,作为优化的目标函数。优化算法会不断调整参数以减少这个误差。 另外,是否要考虑相机的畸变模型,比如径向畸变的k1、k2、k3和切向畸变的p1、p2,这些参数如何参与计算。内参矩阵中的fx、fy、cx、cy又是如何被优化的。 可能用户需要的是整个流程的概述,从数据采集、特征提取、参数初始化、非线性优化到结果评估。需要分步骤解释,并确保术语准确,比如内参包括哪些,畸变系数有哪些,以及如何通过特征点求解这些参数。 总结来说,回答应该包括:使用的特征点类型(如棋盘格角点),特征点检测方法,如何建立对应关系(2D-3D点对),参数计算的数学模型(线性方法初始化,非线性优化),以及迭代优化的过程(如LM算法,最小化重投影误差)。同时,可能需要提到实际应用中常用的工具,如OpenCV的calibrateCamera函数,以及标定时的注意事项,如多角度采集、覆盖整个视野等。使用</think>Intel RealSense D435i相机的**内参校准**时,主要通过提取图像中的**高对比度规则图案特征点**(如棋盘格角点、圆形网格中心等),结合优化算法迭代计算相机内参和畸变参数。以下是具体流程: --- ### **1. 特征点提取** #### **常用特征点类型** - **棋盘格角点**(最常用): - 使用OpenCV的`findChessboardCorners`检测棋盘格内角点。 - 通过亚像素细化(`cornerSubPix`)提升角点精度。 - **圆形网格中心**: - 适用于圆形标定板,通过圆心检测或椭圆拟合定位。 - **AprilTag/ArUco标记**: - 通过二维码标记的角点或编码信息提取特征。 #### **关键步骤** 1. 拍摄多张不同角度/位置的标定板图像(建议15-20张,覆盖视野边缘和中心)。 2. 检测每张图像中的特征点,并记录其**2D像素坐标**。 3. 标定板的物理尺寸已知,对应特征点的**3D世界坐标**需预先定义(例如棋盘格每个方格的边长)。 --- ### **2. 参数计算模型** 相机内参包括: - **内参矩阵**:焦距 \(f_x, f_y\)、主点偏移 \(c_x, c_y\)(形式:\(\begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}\))。 - **畸变系数**:径向畸变 \(k_1, k_2, k_3\)、切向畸变 \(p_1, p_2\)(OpenCV默认使用5参数模型)。 #### **数学模型** 通过**小孔成像模型**建立投影方程: \[ s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \] 其中: - \((X_w, Y_w, Z_w)\) 为3D世界坐标。 - \((u, v)\) 为2D像素坐标。 - \(s\) 为尺度因子。 - 外参矩阵 \([R|t]\) 表示相机姿态(旋转+平移)。 --- ### **3. 参数求解与迭代优化** #### **步骤** 1. **初始化参数**: - 使用线性最小二乘法(如DLT算法)粗略估计内参矩阵。 - 固定内参,通过PnP算法计算每张图的外参 \([R|t]\)。 2. **非线性优化**: - 目标:最小化**重投影误差**(即特征点的观测位置与模型投影位置的差值)。 - 优化参数:内参矩阵、畸变系数、外参。 - 算法:Levenberg-Marquardt(LM算法)或高斯-牛顿法。 - \text{Proj}(K, D, R_i, t_i, P_j) \|^2 \] 其中 \(p_{ij}\) 是第\(i\)张图中第\(j\)个特征点的观测坐标,\(P_j\) 是对应的3D点。 3. **畸变修正**: - 在投影过程中,使用畸变模型修正坐标: \[ x_{\text{corrected}} = x (1 + k_1 r^2 + k_2 r^4 + k_3 r^6) + 2 p_1 xy + p_2 (r^2 + 2x^2) \] \[ y_{\text{corrected}} = y (1 + k_1 r^2 + k_2 r^4 + k_3 r^6) + p_1 (r^2 + 2y^2) + 2 p_2 xy \] 其中 \(r^2 = x^2 + y^2\),\((x, y)\) 为归一化相机坐标。 --- ### **4. 迭代收敛条件** - **终止条件**: - 重投影误差低于阈值(如0.1像素)。 - 参数变化量小于设定值。 - 达到最大迭代次数(通常100~200次)。 - **结果验证**: - 检查重投影误差的标准差和最大值。 - 可视化投影点与真实点的偏差(如图像中绘制误差向量)。 --- ### **5. 工具与实现** - **OpenCV**:直接调用`calibrateCamera`函数,自动完成上述流程。 ```python ret, K, D, rvecs, tvecs = cv2.calibrateCamera( object_points, image_points, image_size, None, None ) ``` - **MATLAB Camera Calibrator**:交互式工具,适合快速标定。 - **ROS相机标定包**:支持动态标定(如`camera_calibration`)。 --- ### **注意事项** 1. 标定板需覆盖图像不同区域(尤其是边缘),以准确估计畸变。 2. 避免标定板模糊或光照不均,确保特征点检测稳定。 3. D435i的深度模块(IR相机)和RGB模块需分别标定。 通过以上步骤,算法能够准确估计相机的内参和畸变参数,确保后续视觉任务(如SLAM、三维重建)的精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值