文章目录
- Concat模块修改步骤
-
- (1) BiFPN_Concat3模块编辑
- (2)在__init_.py+conv.py中声明
- (3)在task.py中声明
- yolov8引入BiFPN_Concat3模块
-
- yolov8.yaml
- yolov8.yaml引入C2f_up模块
在YOLOv8中,
concat
模块主要用于将多个特征图连接在一起。其具体介绍如下:
- 作用:
- 增强特征表达:通过将不同层次的特征图进行组合,能够捕捉到更多的上下文信息,从而增强模型对目标的理解能力,显著提高目标检测的准确性和效率。不同层次的特征图包含了不同尺度和语义级别的信息,将它们拼接起来可以让模型综合利用这些信息进行更准确的预测。
- 应用位置:通常出现在网络的不同层次之间,比如在YOLOv8的颈部(neck)部分经常会使用到
concat
操作。在颈部,需要对来自骨干网络(backbone)不同阶段的特征图进行融合,以便更好地检测不同大小的目标。例如,将低分辨率但富含语义信息的特征图与高分辨率但语义信息较少的特征图进行拼接,从而形成一个更大的输出特征图,这种跨层连接的方式能够同时兼顾细节和感知范围。 - 实现方式:在PyTorch等深度学习框架中,
concat
操作可以通过torch.cat
函数实现,一般是沿着某个维度(如通道维度)将多个特征图拼接起来。但在实际应用