浅谈ForkJoin

ForkJoin

ForkJoin是由JDK1.7后提供多线并发处理框架,ForkJoin的框架的基本思想是分而治之。使用ForkJoin将相同的计算任务通过多线程的进行执行。从而能提高数据的计算速度。在google的中的大数据处理框架mapreduce就通过类似ForkJoin的思想。通过多线程提高大数据的处理。

分而治之

分而治之就是将一个复杂的计算,按照设定的阈值进行分解成多个计算,然后将各个计算结果进行汇总。相应的ForkJoin将复杂的计算当做一个任务。而分解的多个计算则是当做一个子任务。

使用

使用ForkJoin框架,需要创建一个ForkJoin的任务。因为ForkJoin框架为我们提供了RecursiveAction和RecursiveTask。

我们只需要继承ForkJoin为我们提供的抽象类的其中一个并且实现compute方法。

RecursiveTask在进行exec之后会使用一个result的变量进行接受返回的结果。而RecursiveAction在exec后是不会保存返回结果。

private static class SumTask extends RecursiveTask<Integer> {

        private  int threshold;
        private static final int segmentation = 10;

        private int[] src;

        private int fromIndex;
        private int toIndex;

        public SumTask(int formIndex,int toIndex,int[] src){
            this.fromIndex = formIndex;
            this.toIndex = toIndex;
            this.src = src;
            this.threshold = src.length/segmentation;
        }

        @Override
        protected Integer compute() {
            if((toIndex - fromIndex)<threshold ){
                int count = 0;
                System.out.println(" from index = "+fromIndex
                        +" toIndex="+toIndex);
                for(int i = fromIndex;i<=toIndex;i++){
                  count+=src[i];
                }
                return count;
            }else{
                int mid = (fromIndex+toIndex)/2;
                SumTask left =  new SumTask(fromIndex,mid,src);
                SumTask right = new SumTask(mid+1,toIndex,src);
                invokeAll(left, right);
                return left.join() + right.join();
            }
        }
    }

ForkJoinPool

task要通过ForkJoinPool来执行,分割的子任务也会添加到当前工作线程的双端队列中,
进入队列的头部。当一个工作线程中没有任务时,会从其他工作线程的队列尾部获取一个任务(工作窃取)。

 public static void main(String[] args) {
        int[]  array = MakeArray.createIntArray();
        ForkJoinPool forkJoinPool= new ForkJoinPool();
        SumTask sumTask  = new SumTask(0, array.length - 1, array);

        long start = System.currentTimeMillis();

        forkJoinPool.invoke(sumTask);

        System.out.println("The count is " + sumTask.join()
                +" spend time:" + (System.currentTimeMillis()-start) + "ms");

    }

工作窃取(work-stealing)

任务进行分解成多个子任务的时候,每个子任务的处理时间都不一样。

例如分别有子任务A和B。如果子任务A的1ms的时候已经执行,子任务B还在执行。那么如果子任务A的线程等待子任务B完毕后在进行汇总,那么子任务A线程就会在浪费执行时间,最终的执行时间就以最耗时的子任务为准。

而如果子任务A执行完毕后,处理子任务B的任务,并且执行完毕后将任务归还给子任务B。这样就可以提高执行效率,这就是工作窃取。

使用中可能遇到的问题

  • 使用这种多线程带来的数据共享问题,在处理结果的合并的时候如果涉及到数据共享的问题,我们尽可能使用JDK为我们提供的并发容器。
  • 在使用JVM的时候我们要考虑OOM的问题,如果我们的任务处理时间非常耗时,并且处理的数据非常大的时候。会造成OOM。
  • ForkJoin也是通过多线程的方式进行处理任务。那么我们不得不考虑是否应该使用ForkJoin。因为当数据量不是特别大的时候,我们没有必要使用ForkJoin。因为多线程会涉及到上下文的切换。所以数据量不大的时候使用串行比使用多线程快。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值