ForkJoin
ForkJoin是由JDK1.7后提供多线并发处理框架,ForkJoin的框架的基本思想是分而治之。使用ForkJoin将相同的计算任务通过多线程的进行执行。从而能提高数据的计算速度。在google的中的大数据处理框架mapreduce就通过类似ForkJoin的思想。通过多线程提高大数据的处理。
分而治之
分而治之就是将一个复杂的计算,按照设定的阈值进行分解成多个计算,然后将各个计算结果进行汇总。相应的ForkJoin将复杂的计算当做一个任务。而分解的多个计算则是当做一个子任务。
使用
使用ForkJoin框架,需要创建一个ForkJoin的任务。因为ForkJoin框架为我们提供了RecursiveAction和RecursiveTask。
我们只需要继承ForkJoin为我们提供的抽象类的其中一个并且实现compute方法。
RecursiveTask在进行exec之后会使用一个result的变量进行接受返回的结果。而RecursiveAction在exec后是不会保存返回结果。
private static class SumTask extends RecursiveTask<Integer> {
private int threshold;
private static final int segmentation = 10;
private int[] src;
private int fromIndex;
private int toIndex;
public SumTask(int formIndex,int toIndex,int[] src){
this.fromIndex = formIndex;
this.toIndex = toIndex;
this.src = src;
this.threshold = src.length/segmentation;
}
@Override
protected Integer compute() {
if((toIndex - fromIndex)<threshold ){
int count = 0;
System.out.println(" from index = "+fromIndex
+" toIndex="+toIndex);
for(int i = fromIndex;i<=toIndex;i++){
count+=src[i];
}
return count;
}else{
int mid = (fromIndex+toIndex)/2;
SumTask left = new SumTask(fromIndex,mid,src);
SumTask right = new SumTask(mid+1,toIndex,src);
invokeAll(left, right);
return left.join() + right.join();
}
}
}
ForkJoinPool
task要通过ForkJoinPool来执行,分割的子任务也会添加到当前工作线程的双端队列中,
进入队列的头部。当一个工作线程中没有任务时,会从其他工作线程的队列尾部获取一个任务(工作窃取)。
public static void main(String[] args) {
int[] array = MakeArray.createIntArray();
ForkJoinPool forkJoinPool= new ForkJoinPool();
SumTask sumTask = new SumTask(0, array.length - 1, array);
long start = System.currentTimeMillis();
forkJoinPool.invoke(sumTask);
System.out.println("The count is " + sumTask.join()
+" spend time:" + (System.currentTimeMillis()-start) + "ms");
}
工作窃取(work-stealing)
任务进行分解成多个子任务的时候,每个子任务的处理时间都不一样。
例如分别有子任务A和B。如果子任务A的1ms的时候已经执行,子任务B还在执行。那么如果子任务A的线程等待子任务B完毕后在进行汇总,那么子任务A线程就会在浪费执行时间,最终的执行时间就以最耗时的子任务为准。
而如果子任务A执行完毕后,处理子任务B的任务,并且执行完毕后将任务归还给子任务B。这样就可以提高执行效率,这就是工作窃取。
使用中可能遇到的问题
- 使用这种多线程带来的数据共享问题,在处理结果的合并的时候如果涉及到数据共享的问题,我们尽可能使用JDK为我们提供的并发容器。
- 在使用JVM的时候我们要考虑OOM的问题,如果我们的任务处理时间非常耗时,并且处理的数据非常大的时候。会造成OOM。
- ForkJoin也是通过多线程的方式进行处理任务。那么我们不得不考虑是否应该使用ForkJoin。因为当数据量不是特别大的时候,我们没有必要使用ForkJoin。因为多线程会涉及到上下文的切换。所以数据量不大的时候使用串行比使用多线程快。