我想知道 为什么 torch的view 会吧 列和行算一起 进行view ...

在 PyTorch 中,torch.view 是一个非常强大的操作,用于改变张量(Tensor)的形状,而不改变其数据。它的行为可能会让人觉得它“把列和行算在一起”,但实际上,torch.view 的工作原理是基于张量的内存布局和形状的重新解释。以下是对 torch.view 的详细解释,帮助你理解它的行为。

1. torch.view 的基本原理

torch.view 的主要作用是将一个张量重新塑形为一个新的形状,同时保持数据的内存连续性。这意味着,虽然形状改变了,但张量中的数据在内存中的存储顺序不会改变。

举例说明:

假设有一个形状为 (2, 3) 的张量:

Python复制

import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x)

输出:

复制

tensor([[1, 2, 3],
        [4, 5, 6]])

如果使用 view 将其重塑为形状 (3, 2)

Python复制

y = x.view(3, 2)
print(y)

输出:

复制

tensor([[1, 2],
        [3, 4],
        [5, 6]])

在这个例子中,view 操作将原始张量的形状从 (2, 3) 改为 (3, 2),但它并没有改变数据的存储顺序。原始数据在内存中的顺序是 [1, 2, 3, 4, 5, 6],在新的形状下,这个顺序仍然保持不变。

2. 为什么看起来像是“把列和行算在一起”?

这种感觉可能来源于 view 操作对张量形状的重新解释。view 并不是重新排列数据,而是重新解释数据的形状。具体来说,view 会根据新的形状来重新划分数据,但数据的存储顺序保持不变。

内存连续性:

view 要求张量在内存中是连续的(contiguous)。如果张量不是连续的(例如,经过某些操作后改变了内存布局),则不能直接使用 view,而需要先调用 .contiguous() 方法。

举例说明:

假设有一个形状为 (2, 3) 的张量,进行转置操作后:

Python复制

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
x_t = x.t()  # 转置
print(x_t)

输出:

复制

tensor([[1, 4],
        [2, 5],
        [3, 6]])

此时,x_t 的形状是 (3, 2),但它的内存布局不是连续的。如果直接调用 view

Python复制

y = x_t.view(6)  # 会报错

会报错:

RuntimeError: view size is not compatible with input size

这是因为转置操作改变了内存布局,使得张量不再是连续的。可以通过 .contiguous() 方法解决:

Python复制

y = x_t.contiguous().view(6)
print(y)

输出:

tensor([1, 4, 2, 5, 3, 6])

3. 总结:torch.view 的行为

  • 内存连续性torch.view 要求张量在内存中是连续的。如果张量不是连续的,需要先调用 .contiguous()

  • 形状重新解释torch.view 是根据新的形状重新解释数据的存储顺序,而不是重新排列数据。

  • 数据顺序不变:无论形状如何改变,数据在内存中的存储顺序保持不变。

因此,torch.view 并不是“把列和行算在一起”,而是根据新的形状重新解释数据的存储顺序。这种行为使得 view 非常高效,因为它不需要移动数据,只是改变了对数据的视图(view)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值