2021年至2025年6月期间,Transformer在计算机视觉领域的最新算法和技术进展的总结

以下是2021年至2025年6月期间,Transformer在计算机视觉领域的最新算法和技术进展的总结:

1. 图像分类

  • Vision Transformer (ViT):ViT将图像分割成多个小块(patch),并将这些patch作为序列输入到Transformer模型中,取得了优异的分类性能。
  • 改进的ViT变体:包括可扩展的位置编码、低复杂度和低计算代价的优化版本,以及融合局部信息与全局信息的模型。

2. 目标检测

  • DETR(Detection Transformer):首次将Transformer引入目标检测任务,能够通过单次前向传播输出所有物体的边界框和类别。
  • Transformer融合YOLOV5:结合Transformer结构和YOLOV5模型,更好地捕获全局信息和丰富的上下文信息。

3. 图像分割

  • SETR(Segmentation Transformer):使用Transformer处理图像中的像素,能够在单次前向传播中输出所有像素的类别。

4. 图像超分辨率

  • HAT(Hierarchical Attention Transformer):采用轴向变形注意力机制,能够更好地建模长距离依赖并恢复局部细节。
  • Swin2SR:使用动态掩码注意力机制,实现轻量化和高效计算。
  • CrossFormer-SR:引入跨模态注意力机制,利用多源信息辅助超分辨率。

5. 3D建模与多视图几何

  • VGGT(Vision Geometry Group Transformer):通过大型Transformer架构处理多视图图像序列,预测相机参数、深度图、点图和点轨迹。

6. 图像复原

  • Taylor Expanded Multi-head Self-Attention (T-MSA++):通过泰勒展开优化传统的Softmax-attention机制,结合卷积位置编码(CPE),在保持线性计算复杂度的同时保留非线性特性。

7. 多模态融合

  • MP-GT(Meta-Path Guided Transformer):结合图卷积网络(GCN)和Transformer,通过元路径引导优化,提高多模态数据的预测性能。
  • ResCLIP:通过激活CLIP模型的潜在密集预测能力,无需微调即可释放视觉语言大模型的密集推理潜能。

8. 视频处理

  • Video-SwinIR:结合时空注意力和动态对齐机制,优化视频超分辨率的时序一致性。

9. 图像生成

  • DALL-E:使用GPT-3风格的Transformer模型,根据文本描述生成图像。
  • NeRF-SR:结合神经辐射场(NeRF)和超分辨率技术,优化3D场景视角一致性。

这些算法和技术展示了Transformer在计算机视觉领域的广泛应用和持续创新,从图像分类到3D建模,从超分辨率到多模态融合,Transformer正在不断推动计算机视觉的发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值