matlab 计算对数似然相似度

本文介绍了如何利用对数似然计算行熵、列熵和矩阵熵,进而衡量用户行为的相似度。通过实例展示了如何在矩阵K中应用这些概念,得出的UserSimilarity为3.6012,揭示了用户行为数据的统计特征和相似性分析方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算对数似然相似度

clc,clear;
%计算对数似然相似度
K=[1 2 3;
    1 2 3;
    1 2 3];
N=sum(sum(K));
%计算行熵
rowEntropy=[K(1,1)*log(K(1,1)/sum(K(1,:))),K(1,2)*log(K(1,2)/sum(K(1,:))),K(2,1)*log(K(2,1)/sum(K(2,:))),K(2,2)*log(K(2,2)/sum(K(2,:)))];
rowEntropy(find(isnan(rowEntropy)==1))=0;
rowEntropy=sum(rowEntropy./N);
%计算列熵
columEntropy=[K(1,1)*log(K(1,1)/sum(K(:,1))),K(1,2)*log(K(1,2)/sum(K(:,2))),K(2,1)*log(K(2,1)/sum(K(:,1))),K(2,2)*log(K(2,2)/sum(K(:,2)))];
columEntropy(find(isnan(columEntropy)==1))=0;
columEntropy=sum(columEntropy./N);
%计算矩阵熵
matrixEntropy=K./N.*log(K./N);
matrixEntropy(find(isnan(matrixEntropy)==1))=0;
matrixEntropy=sum(sum(matrixEntropy));
%计算相似度
UserSimilarity=1-2*(matrixEntropy-rowEntropy-columEntropy)

result

rowEntropy =

-0.4432

columEntropy =

-0.3662

matrixEntropy =

-2.1100

UserSimilarity =

3.6012
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值