
YOLO&计算机视觉研究与目标检测
文章平均质量分 94
想紧跟 AI 前沿趋势,将技术落地实践吗?本专栏别错过!聚焦目标检测、跟踪、图像分割等热门方向,实时分享最新论文算法新框架,还支持一键下载。更有实战项目倾囊相授,带你理论结合实践,快速提升 AI 技能,开启精彩进阶之路!
zhangjiaofa
一名十五年经验的软件开发老兵、多年产品经理与算法开发经验。现在钻研大模型相关的技术与智能硬件相关的前沿知识。
微信公众号:不躺平的程序员
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于YOLOv8深度学习的人脸面部口罩检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
1. 可进行戴口罩、未带口罩及未正确戴口罩这3种状态的目标检测;支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置目标总数置信度用时等信息;支持图片或者视频的检测结果保存;原创 2025-04-21 19:02:40 · 106 阅读 · 0 评论 -
基于YOLOv8深度学习的120种犬类检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
狗的检测与种类识别技术对于多个领域具有重要意义。首先,此技术可以用于公共安全和执法。例如,警方和安保人员可以利用它快速识别搜救犬、警犬以及潜在的威胁性狗类,提高工作效率和响应速度。其次,宠物行业也可受益匪浅,此技术有助于宠物店、兽医诊所和动物收容所更准确地记录和管理犬只信息,提供更个性化的服务。在城市管理方面,犬类检测与识别技术能够辅助城市管理者监控流浪狗的数量和分布,及时处理可能的公共卫生问题和安全风险。同样地,野生动物保护项目可以使用这一技术来研究和监控野狗对生态系统的影响。原创 2025-04-21 17:31:47 · 67 阅读 · 0 评论 -
基于YOLOv8深度学习的钢材表面缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
钢材表面缺陷检测对于保障产品质量、延长使用寿命以及防止潜在的安全风险至关重要。在金属加工和制造业中,及时且准确地检测出表面缺陷,可以避免不合格产品流入市场,从而确保结构的完整性和可靠性,以及产品的美观性和性能标准。此外,缺陷检测能够帮助制造厂商降低废品率,提高材料的利用率,减少经济损失。钢材表面缺陷检测应用场景广泛,例如在汽车制造航空航天船舶制造建筑管道和压力容器等行业的钢材质量控制中都极为重要。原创 2025-04-21 17:27:20 · 189 阅读 · 0 评论 -
【目标检测实战】基于深度学习的路面坑洞检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战
1. 可实时进行路面坑洞的目标检测;支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置目标总数置信度用时等信息;支持图片或者视频的检测结果保存;原创 2025-04-21 17:17:37 · 82 阅读 · 0 评论 -
【深度学习实战】基于深度学习的火焰烟雾检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
可进行火焰烟雾及正常这3种状态的目标检测;支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置目标总数置信度用时等信息;支持图片或者视频的检测结果保存;原创 2025-04-21 17:11:13 · 56 阅读 · 0 评论 -
基于YOLOv8深度学习的生活垃圾分类目标检测系统【python源码+Pyqt5界面+数据集+训练代码】【深度学习实战】
可以检测日常的生活垃圾,并且分为4种类别'可回收垃圾','有害垃圾','厨余垃圾','其他垃圾';支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置目标总数置信度用时等信息;支持图片或者视频的检测结果保存;原创 2025-04-21 17:04:50 · 42 阅读 · 0 评论 -
基于YOLOv8深度学习的安全帽检测系统【python源码+Pyqt5界面+数据集+训练代码】
1. 可进行人员佩戴安全帽与未戴安全帽两种状态的目标检测;支持图片、视频及摄像头进行检测,同时支持图片的批量检测;界面可实时显示目标位置目标总数置信度用时等信息;支持图片或者视频的检测结果保存;原创 2025-04-21 16:59:54 · 99 阅读 · 0 评论 -
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】
PCB板缺陷检测在电子制造行业中具有重要的意义。随着电子产品的普及和需求的不断增长,对PCB板的质量和可靠性要求也越来越高。PCB板作为电子产品的核心组件,其质量直接影响到整个产品的性能和稳定性。因此,对PCB板进行缺陷检测是确保产品质量的关键步骤。工业生产:在PCB板的生产过程中,通过实时检测和识别各种缺陷类型,可以有效地提高生产效率和产品质量。同时,通过对缺陷数据的统计和分析,可以为生产过程提供优化建议,降低生产成本。维修与维护:在电子产品的使用过程中,可能会出现PCB板损坏的情况。原创 2025-04-21 16:52:22 · 62 阅读 · 0 评论 -
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
1. 支持图片、视频及摄像头进行跌倒检测,同时支持图片的批量检测;2. 界面可实时显示目标位置目标总数置信度用时等信息;3. 支持图片或者视频的跌倒检测结果保存;原创 2025-04-21 16:43:38 · 84 阅读 · 0 评论 -
基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战
1. 可进行7种不同人物表情识别['生气','厌恶','害怕','高兴','中立','伤心','惊讶'];2.支持图片、视频及摄像头进行人脸表情检测;3.界面可实时显示表情结果置信度各表情概率值等信息;原创 2025-04-21 16:30:39 · 71 阅读 · 0 评论 -
基于YOLOv8的多目标检测与自动标注软件【python源码+PyqtUI界面+exe文件】【深度学习】
1. 支持80个类别的目标检测,可指定检测类别,详细目标类别见下方说明;支持图片、视频及摄像头进行检测,并显示目标位置目标总数,保存检测结果;支持图片批量检测与自动标注,并将结果保存为YOLO格式文件,用于后续模型训练;支持单个类别的目标选择与检测,并保存检测结果和YOLO标签文件。原创 2025-04-21 16:23:06 · 67 阅读 · 0 评论 -
眨眼、张嘴、点头、摇头一网打尽,人脸活体检测系统开发【Python源码+UI界面】
目前,人脸识别技术在我们日常生活应用十分广泛,几乎随处都能会接触到,比如手机的人脸识别解锁、人脸支付、门禁闸机的人脸识别出入等等。但随之而来也会遇到一定的问题,如:人脸识别只能检测目标人脸是否和预留人脸数据特征是否一致,却不能检测是否是真的活人。因此各种欺骗手段也开始露出水面,如何判断被检测对象是否是真的活人,而不是照片、视频甚至是人皮面具,是一个亟待解决的问题,此时,活体检测走上了时代的舞台。活体检测。原创 2025-04-21 16:15:14 · 418 阅读 · 0 评论 -
手把手教你打造一个基于车牌识别的停车场管理系统【含python源码+PyqtUI界面+功能详解】-深度学习实战项目
车牌识别系统(Vehicle License Plate Recognition,VLPR) 是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程。原创 2025-04-21 16:00:11 · 293 阅读 · 0 评论 -
基于深度学习的人脸识别与人员信息管理软件【python源码+UI界面+功能源码详解】
人脸识别技术是一种生物识别技术,可以用来确认用户身份。人脸识别技术相比于传统的身份识别技术有很大的优势,主要体现在方便性上。传统的身份认证方式诸如:密码、PIN码、射频卡片、口令、指纹等,需要用户记住复杂密码或者携带身份认证钥匙。而密码、卡片均存在丢失泄露的风险,相比于人脸识别,交互性于安全性都不够高。人脸识别可以使用摄像头远距离非接触识别,相比于指纹免去了将手指按在识别区域的操作,可由摄像头自动识别。原创 2025-04-21 15:51:43 · 49 阅读 · 0 评论 -
DCGC-YOLO:用于火灾检测的高效双通道瓶颈结构YOLO检测算法
总的来说,目标检测中的注意力机制通过有选择地关注图像中与目标检测最相关的部分,而不是不加区分地处理整个图像,有助于提高模型的准确性和效率。在目标检测中使用的注意力机制有不同的类型,但最常见的一种是空间注意力机制,它关注图像的特定区域。该结构增大了网络的感受野,增强了特征提取能力,并且采用了一种通道净化机制,将分组卷积分离出的各个通道进行融合,促进了通道维度上的信息交换,实现了更好的信息编码。)的锚框生成算法,在自定义的火灾数据集上调整锚框大小,增强了模型的鲁棒性,提高了检测精度。原创 2025-04-19 09:33:57 · 56 阅读 · 0 评论 -
DBW - YOLO:一种适用于复杂环境的高精度合成孔径雷达(SAR)舰船检测方法
然而,由于它们对背景复杂性较为敏感,且对目标变化的适应性不足,随着雷达平台参数的多样性增加以及模型复杂度的提升,其检测效果较差。它以其高效的实时目标检测能力而闻名,具有快速的推理速度和较低的计算复杂度,这使其非常适合实时应用,并且在处理大型数据集时表现出色。然而,在处理近岸船舶时,卷积往往会提取大量的背景信息,从而影响网络识别船舶目标的能力。)对于文献中提出的方法,这些模型的特征提取网络无法生成纯净的船舶特征,使得它们容易受到周围环境的干扰,特别是对于纹理复杂或尺寸较小的目标,会导致检测精度下降;原创 2025-03-11 12:51:43 · 99 阅读 · 0 评论 -
基于YOLOv8的交通标志检测方法
交通标志检测对于自动驾驶技术至关重要。尽管以实时处理能力著称的单阶段检测算法已被广泛应用,但在复杂的交通环境中准确检测交通标志仍然是一项挑战。本文提出了一种基于YOLOv8的交通标志检测方法。具体而言,本研究引入了空间到深度(SPD)模块,以解决因交通场景中交通标志的多尺度变化而导致的漏检问题。SPD模块将空间信息压缩到深度通道中,扩大了感受野,增强了对不同尺寸目标的检测能力。此外,为了解决由树木等复杂背景导致的漏检问题,本文采用了选择核(Select Kernel)注意力机制。原创 2025-03-07 12:28:36 · 219 阅读 · 0 评论 -
Hyper-YOLO:当视觉目标检测遇上超图计算以及代码实现
Hyper-YOLO,这是一种全新的目标检测方法,它集成了超图计算以捕捉视觉特征之间复杂的高阶相关性。尽管传统的YOLO模型功能强大,但其颈部设计存在局限性,限制了跨层特征的融合以及高阶特征相互关系的挖掘。为应对这些挑战,我们提出了超图计算赋能的语义收集与传播(HGC - SCS)框架,该框架将视觉特征图转换到语义空间,并构建一个超图用于高阶消息传播。这使模型能够同时获取语义信息和结构信息,超越了传统的以特征为中心的学习方式。Hyper-YOLO在其骨干网络中引入了所提出的混合聚合网络(原创 2025-03-06 12:56:57 · 204 阅读 · 0 评论 -
Gold-YOLO:基于聚合与分配机制的高效目标检测器
这在不显著增加延迟的情况下,显著增强了颈部网络的信息融合能力,提升了模型在不同物体尺寸下的性能。这些颈部模块基本遵循下图所示的架构。通过使用统一的模块收集并融合来自所有层级的信息,随后将其分配到不同层级,我们不仅避免了传统 FPN 结构固有的信息损失,还在不显著增加延迟的情况下增强了颈部的局部信息融合能力。然而,当前的信息融合方法存在一个显著缺陷:当需要跨层整合信息时(例如,融合第 1 层和第 3 层的信息),传统的类似 FPN 的结构无法无损地传输信息,这阻碍了 YOLO 系列模型实现更好的信息融合。原创 2025-03-02 19:46:37 · 76 阅读 · 0 评论 -
夜间目标检测的革命:2PCNet与NightAug技术的深度解析
本文介绍了一种基于2PCNet和NightAug技术的夜间目标检测系统。2PCNet通过两阶段一致性无监督学习,结合教师网络的高置信度伪标签和学生网络的区域建议,显著提升了小目标和低光条件下的检测性能。NightAug增强管道通过模拟夜间条件(如眩光、模糊和噪声),减少了模型对日间数据的依赖。实验表明,该方法在公开数据集上优于现有技术,并在实际场景中展现了强大的应用潜力。原创 2025-02-25 20:22:38 · 161 阅读 · 0 评论 -
YOLO - S:面向小目标检测的轻量级高精度类 YOLO 网络架构
小目标检测仍然是一项具有挑战性的任务,尤其是在为移动或边缘应用寻找快速准确的解决方案时。在下次分享中,有研究者提出了YOLO-S,一个简单、快速、高效的网络。它利用了一个小的特征提取器,以及通过旁路和级联的跳过连接,以及一个重塑直通层来促进跨网络的特征重用,并将低级位置信息与更有意义的高级信息相结合。航空图像中的小目标检测已经成为当今研究的热点。事实上,最近出现的无人机等数据赋能技术为广泛的客户群提供了一种具有成本效益的解决方案,根据相机轴、飞行器高度和使用的胶片类型,满足了广泛且几乎无限的用户需求。原创 2025-02-23 18:33:25 · 183 阅读 · 0 评论 -
Gold-YOLO:基于聚合与分配机制的高效目标检测器
在过去几年中,YOLO 系列模型已成为实时目标检测领域的主流方法。尽管特征金字塔网络(FPN)和路径聚合网络(PANet)缓解了信息融合问题,但以往的模型仍存在信息融合方面的难题。本研究提出了一种先进的聚合与分配(GD)机制,通过卷积和自注意力操作实现。这种新设计的模型名为Gold-YOLO,它增强了多尺度特征融合能力,并且在所有模型尺度下,都能在延迟与精度之间实现理想的平衡。此外,我们首次在 YOLO 系列模型中采用了 MAE 风格的预训练,使得 YOLO 系列模型能够从无监督预训练中获益。原创 2025-02-23 17:54:07 · 246 阅读 · 0 评论 -
基于YOLOv8的无人机轻量级目标检测算法LUD-YOLO
无人机自主执行任务在很大程度上依赖于目标检测。然而,大多数图像中的目标检测面临着诸如背景复杂、目标小以及存在遮挡等挑战。此外,无人机处理器有限的计算速度和内存也影响了传统目标检测算法的准确性。为了解决这些问题,我们提出了基于YOLOv8的面向无人机的小型轻量级目标检测算法LUD-YOLO。LUD-YOLO引入了一种新的多尺度特征融合模式,通过在特征金字塔网络(FPN)和渐进式特征金字塔网络(AFPN)中引入上采样,解决了特征传播和交互中的退化问题。原创 2025-02-23 17:28:56 · 794 阅读 · 0 评论 -
YOLO新模型:基于改进模型的茶叶病害智能检测技术研究
本文聚焦茶叶病害智能检测难题。鉴于中国茶叶产业地位重要,而病害严重影响产量与品质,传统检测方法弊端多。文中提出改进的茶叶病害检测模型,通过数据增强、改进 YOLOv5 框架、优化损失函数及运用迁移学习等技术。实验表明,该模型检测精度超主流模型,速度达实时,有望大规模部署,提升茶叶生产效率与质量 。原创 2025-02-23 17:01:02 · 1080 阅读 · 0 评论 -
无人机图像目标检测:Drone-YOLO的创新与应用
下图显示了我们提出的Drone-YOLO(L)网络模型的架构。该网络结构是对YOLOv8-l模型的改进。在网络的主干部分,我们使用RepVGG结构的重新参数化卷积模块作为下采样层。在训练过程中,这种卷积结构同时训练3×3和1×1卷积。在推理过程中,两个卷积核被合并为一个3×3卷积层。这种机制使网络能够在不影响推理速度或扩大模型大小的情况下学习更稳健的特征。在颈部,我们将PAFPN结构扩展到三层,并附加了一个小尺寸的物体检测头。原创 2025-02-23 10:39:49 · 796 阅读 · 0 评论