AP聚类

本文介绍了近邻传播算法(Affinity Propagation, AP),一种基于数据点相似度矩阵的聚类算法。AP算法相较于K-means更为灵活:无需指定簇的数量、不受初始选择的影响且能同时找到代表性样本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近邻传播算法(Affinity propagation,AP)是一种新提出的聚类算法,是在数据点的相似度矩阵的基础上进行聚类,通过数据点之间交换信息,最后得到聚类结果。

Affinity Propagation clustering algorithm (AP) is more flexible than K-means for three reasons. 

First, AP does not require users to specify the number of clusters, when the number of aspects is just unknown.
Second, AP does not suff er from the initial selection of exemplars

Third, AP can find representative sentences from S simultaneously.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值