yolov8obb 旋转目标检测 瑞芯微 rknn rk3588 部署 C++代码

  有网友说看到了yolov8obb导出onnx以及转换成rknn的博客,但没有找到对应的上板子的C++代码,希望提供一个rk的C++代码,供参考学习一下。之前写完导出onnx和转换rknn后,由于目前也没有项目用,计划以后有项目用了在写部署rk的C++代码,奈何有网友私信。花了一点时间写了一下部署rk的C++代码,其实就是把测试onnx的代码改成C++。不为工作而整部署内心迷茫的我,希望早日遇到玩移植部署而温暖的你。

  yolov8obb 旋转目标检测rknn的C++部署。

  直接上代码和模型,欢迎参考交流 【完整代码和模型】

1、rknn模型准备

  pytorch转onnx,onnx再转rknn模型这一步就不再赘述,请参考上一篇 【yolov8-obb 旋转目标检测 瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署】

2、C++ 代码

  模型和图片读取部分参考rknn官方提供的示例,详细代码请参本实例对应的github仓库,代码和模型 。本实例提供的完整代码也就只包含两个.c文件和一个.h 文件,主打一个简单。

3、编译运行

1)编译

cd examples/rknn_yolov8_obb_demo

bash build-linux_RK3588.sh

2)运行

cd install/rknn_yolov8obb_demo_Linux

./rknn_yolov8obb_demo

  注意:修改模型、测试图像、保存图像的路径,所在文件为 src 下main.cc文件。示例使用的类别时15类,自己的数据注意修改类别,在 include 下 postprocess.h 文件。具体代码细节参考对应的代码仓库。

4、板端效果

onnx 测试效果
在这里插入图片描述
rk3588板子上效果
  板端rknn测试效果,冒号“:”前的数子是coco的80类对应的类别,后面的浮点数是目标得分(类别:得分)。板端效果和onnx效果不完全一致是由于转rknn时精度有所丢失导致。若想让精度丢失的少,可以考虑使用更多、更丰富的量化图片。

在这里插入图片描述

5、模型和后处理时耗

在这里插入图片描述

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值