Spark运行WordCount(案例二)

Spark运行WordCount(案例二)

具体细节参考Spark运行WordCount(案例一):

https://zhangvalue.blog.csdn.net/article/details/122501292icon-default.png?t=LBL2https://zhangvalue.blog.csdn.net/article/details/122501292

和前期准备工作:

Mac安装Spark并运行SparkPi_zhangvalue的博客-CSDN博客Mac安装Spark2.4.7https://archive.apache.org/dist/spark/spark-2.4.7/spark-2.4.7-bin-hadoop2.7.tgz解压tgz文件tar xvf spark-2.4.7-bin-hadoop2.7.tgz先创建scala项目并进行编译打成jar包然后就打好成了本地的jar包打包一个jar包通过sparksubmit提交./bin...https://zhangvalue.blog.csdn.net/article/details/122501186

import org.apache.spark.{SparkConf, SparkContext}

/**
  * 统计字符出现次数
  */
object WorkCount {
  def main(args: Array[String]) {
    if (args.length < 1) {
      System.err.println("Usage: <file>")
      System.exit(1)
    }
    val conf = new SparkConf()
    val sc = new SparkContext(conf)
    //SparkContext 是把代码提交到集群或者本地的通道,我们编写 Spark代码,无论是要运行本地还是集群都必须有 SparkContext 的实例。
    val line = sc.textFile(args(0))
    //把读取的内容保存给line变量,其实line是一个MappedRDD,Spark的代码,都是基于RDD操作的;
    line.flatMap(_.split("")).map((_, 1)).reduceByKey(_+_).collect.foreach(println)

    sc.stop
  }
}

#!/bin/bash

cd $SPARK_HOME/bin
spark-submit \
--master spark://localhost:7077 \
--class WorkCount \
--name WorkCount \
--executor-memory 2048M \
--driver-memory 3096M \
/Users/zhangsf/bigdata/myjar/wordcount.jar \
hdfs://localhost:9000/zhangvalue/input/poet.txt

### 回答1: Spark开发环境搭建: 1. 安装Java环境:Spark运行需要Java环境,可以从Oracle官网下载JDK安装。 2. 下载Spark:从Spark官网下载Spark安装包,解压到本地目录。 3. 配置环境变量:将Spark的bin目录添加到系统环境变量中。 4. 启动Spark:在终端中输入spark-shell命令,启动SparkWordCount案例: 1. 准备数据:将需要统计的文本文件放在本地或HDFS上。 2. 编写代码:使用Scala或Java编写WordCount程序,读取文本文件进行单词计数。 3. 打包程序:将程序打包成jar包,以便在Spark运行。 4. 提交任务:使用spark-submit命令提交任务,指定jar包和输入输出路径。 5. 查看结果:任务执行完成后,查看输出路径中生成的结果文件,即为单词计数结果。 ### 回答2: Spark是一个流行的分布式计算框架,可以为海量数据提供快速、高效的处理能力。要进行Spark开发,需要先搭建好相应的开发环境。在这里,我们以wordcount案例为例,介绍如何搭建Spark开发环境。 1.安装Java环境 Spark需要Java环境的支持,因此需要在计算机上安装Java环境。可以去Java官网下载相应版本的JDK安装包,然后按照提示安装即可。 2.安装SparkSpark官网上下载最新版本的Spark解压到指定目录。接着,需要根据实际需求进行一些配置,比如配置环境变量等。 3.写wordcount程序 这里我们以Scala语言为例,写出一个简单的wordcount程序。代码如下: ``` import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("WordCount").setMaster("local") val sc = new SparkContext(conf) val input = sc.textFile("input.txt") val words = input.flatMap(line => line.split(" ")) val counts = words.map(word => (word, 1)).reduceByKey(_ + _) counts.collect().foreach(println) } } ``` 该程序功能是读取指定文件,统计文件中每个单词的出现次数,输出到控制台上。 4.执行wordcount程序 在完成wordcount程序的编写后,可以运行Spark系统来测试该程序的执行效果。运行命令如下: ``` ./bin/spark-submit --class WordCount --master local WordCount.jar ``` 其中WordCount是程序的主类名,--master local指定Spark程序运行在本地模式下,WordCount.jar是程序打包后的jar包文件。如果一切正常,此时程序就会开始执行,输出每个单词的出现次数。 到此为止,Spark开发环境搭建及wordcount案例的实现就完成了。在实际的开发工作中,还需要根据具体需求加以完善和优化,提高Spark的效率和稳定性。 ### 回答3: Spark是一个分布式计算引擎,可以处理大规模的数据集。在这篇文章中,我们将介绍如何在Windows系统上搭建Spark的开发环境,使用Spark编写一个Word Count案例。 1.下载安装Java JDK 首先,你需要下载安装Java JDK。你可以在Oracle网站上下载最新版本的Java JDK。 2.下载安装Spark 接下来,你需要从Spark官网上下载最新版本的Spark解压缩它。你可以下载带有预构建“binaries”的版本,且不需要对Spark进行任何重新编译。 3.配置环境变量 接下来,你需要配置环境变量,以便在系统中设置SPARK_HOME和Path。要设置这些变量,你需要按照以下步骤进行操作: 1)右键单击“此电脑”,然后单击“属性”。 2)单击“高级系统设置”。 3)单击“环境变量”。 4)在“系统变量”下,单击“新建”。 5)在“变量名”中输入SPARK_HOME,在“变量值”中输入Spark的安装路径。 6)在“系统变量”中找到Path,单击“编辑”。 7)在路径的末尾添加%SPARK_HOME%\bin。 8)单击“确定”以保存更改。 4.编写Word Count案例 接下来,你可以开始编写你的Word Count案例。Word Count案例Spark开发中的最经典的案例之一,其任务是统计给定文本中每个单词出现的次数。 Spark使用Scala编写,因此你需要了解Scala语言的基础知识。以下是一个简单的Word Count案例: ``` import org.apache.spark.SparkConf import org.apache.spark.SparkContext object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Word Count").setMaster("local") val sc = new SparkContext(conf) val textFile = sc.textFile("input.txt") val counts = textFile.flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) counts.saveAsTextFile("output.txt") sc.stop() } } ``` 在这个程序中,我们首先创建了一个SparkConf对象和SparkContext对象。接下来,我们使用SparkContext来读取输入文件,然后使用flatMap()函数将每行文本拆分成单词。之后,我们使用map()函数将每个单词的出现次数设置为1,接着使用reduceByKey()函数将每个单词的次数相加。最后,我们将计数结果保存到输出文件中。 5.运行Word Count案例 在本地模式下,你可以使用以下命令行来运行Word Count案例: ``` $SPARK_HOME/bin/spark-submit \ --class WordCount \ --master local[*] \ target/scala-2.11/word-count_2.11-1.0.jar input.txt output.txt ``` 在这个命令中,我们指定了Spark应用程序的名称为Word Count,将启动模式设置为local。我们还指定了输入和输出文件的路径。 总结 在本文中,我们介绍了Spark的开发环境搭建和Word Count案例的编写和运行。使用Spark进行大规模数据处理可提高处理效率和质量,且易于扩展和部署。Spark的适用范围非常广泛,可以用于各种领域的大数据处理,如金融、医疗等。希望本文能帮助你在开发中更好地利用Spark
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangvalue

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值