
机器学习实战
huihui12a
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习实战:回归
机器学习实战:回归原创 2022-06-29 21:35:14 · 649 阅读 · 0 评论 -
机器学习实战:AdaBoost预测病马率
import numpy as np """ 函数说明:加载数据集 Parameters: filename - 文件名 Returns: dataMat - 数据集 labelMat - 标签 """ def loadDataSet(filename): numFeat = len((open(filename).readline().split('\t'))) dataMat = []; labelMat = [] fr = open(filename.原创 2022-03-10 15:39:03 · 2456 阅读 · 0 评论 -
机器学习实战:逻辑回归(3)-Sklearn实现病马死亡率预测
from sklearn.linear_model import LogisticRegression """ 函数说明:使用Sklearn构建Logistic回归分类器 Parameters: 无 Returns: 无 """ def colicSklearn(): frTrain = open('horseColicTraining.txt','r') frTest = open('horseColicTest.txt','r') trainingSet = .原创 2022-01-19 10:09:49 · 1523 阅读 · 0 评论 -
机器学习实战:逻辑回归(2)-从疝气病症预测病马的死亡率
1.准备数据:处理数据中的缺失值 可选的做法: 使用可用特征的均值来填补缺失值; 使用特殊值来填补缺失值,如-1; 忽略有缺失值的样本; 使用相似样本的均值添补缺失值; 使用另外的机器学习算法预测缺失值。 我们对要用的数据集进行预处理: 选择实数0来替换所有的缺失值。 因为更新时不会影响系数。回归系数的更新公式如下: 如果dataMatrix的某特征对应值为0,那么该特征的系数将不做更新,即: weights=weights 同时,由于s...原创 2022-01-17 11:07:29 · 2045 阅读 · 0 评论 -
机器学习实战:逻辑回归(1)
批量梯度上升:用所有样本进行更新 import numpy as np import matplotlib.pyplot as plt """ 函数说明:加载数据 Parameters: 无 Returns: dataMat - 数据列表 labelMat - 标签列表 """ def loadData(): dataMat = [] lableMat = [] fr = open('testSet.txt','r') for line in fr原创 2022-01-16 16:47:43 · 591 阅读 · 0 评论 -
机器学习实战:朴素贝叶斯-邮件分类
email.py import numpy as np import random import re """ 函数说明:接收一个大字符串并将其解析为字符串列表 Parameters: bigString - 接收的字符串 Returns: """ def textParse(bigString): listOfTokens = re.split(r'\W+',bigString) return [tok.lower() for tok in listOfTokens原创 2022-01-12 21:11:01 · 394 阅读 · 0 评论 -
机器学习实战:决策树-隐形眼镜
import pandas as pd from sklearn.preprocessing import LabelEncoder,OneHotEncoder from sklearn.tree import DecisionTreeClassifier,export_graphviz import pydotplus import numpy as np import graphviz """ 函数说明:数据处理 Parameters: filename - 数据文件 Returns: .原创 2022-01-07 13:58:40 · 833 阅读 · 0 评论 -
机器学习实战:决策树
tree.py from math import log from matplotlib.font_manager import FontProperties import matplotlib.pyplot as plt import pickle """对数据集进行标注: 年龄:0-青年,1-中年,2-老年 有工作:0-否,1-是 有自己的房子:0-否,1-是 信贷情况:0-一般,1-好,2-非常好 类别(是否给贷款):no-否,yes-是 """ """ 函数说明:创建数据集 Paramete原创 2022-01-06 14:13:09 · 337 阅读 · 0 评论 -
机器学习实战:knn实现手写数字识别
import os.path from sklearn.neighbors import KNeighborsClassifier as knn import numpy as np from os import listdir """ 函数说明:将32*32的图像转化为(1,1024)的向量 Parameters: filename - 文件名 returns: returnVector - 返回的(1,1024)的向量 """ def img2vector(filename):...原创 2021-12-27 16:21:15 · 579 阅读 · 0 评论