sysaux 空间满

由于将AWR快照设置为每30分钟一次并保留25天,sysaux表空间变得非常拥挤。尝试通过OEM更改参数、删除快照、调整保留时间和重建AWR等方式解决问题,最终通过运行catsvrm.sql和DBMS_WORKLOAD_REPOSITORY调整成功释放空间。文章还介绍了AWR的工作原理和相关SQL语句。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一时冲动将awr的快照时间改成30分钟一次、保留25天、level=all。造成sysaux表空间爆满。

下面是解决方法:

1. 在oem里更改以上参数,将采样时间改成1小时、保留7天、level=typical。发现不灵,不知道是不是oem有问题。

2.用语句更改,早知道就应该用语句了:

exec dbms_workload_repository.drop_snapshot_range(low_snap_id => xxxx, high_snap_id=>xxxx)

发现表空间释放一些,但是第二天数据库报错,说是sysaux空间无法扩展。再用以上方法不灵。

3. select * from dba_hist_wr_control;

发现 snap_interval 为30, retention 20。原来oem没有将它改过来,之后修改retention

DBMS_WORKLOAD_REPOSITORY.modify_snapshot_settings(retention => 7);

改过之后发现空间依然没有回收。

4. 终极大法,删除awr,重新建立

SQL> @?/rdbms/admin/catnoawr.sql   -----------------------删除awr

但是在重新建立上出了麻烦,查到的资料是运行@?/rdbms/admin/catawrtb.sql 但是在运行DBMS_WORKLOAD_REPOSITORY报错。

经过google 发现10g2 上应该运行catsvrm.sql,运行之后问题解决。之后运行DBMS_WORKLOAD_REPOSITORY调整时间。

重启数据库

附DBMS_WORKLOAD_REPOSITORY使用方法:

http://www.eygle.com/digest/2008/09/oracle10g_dbms_workload_reposi.html

Oracle 在10g以前的使用的是 Statspack做性能故障诊断的。Oracle Database 10g 提供了一个显著改进的工具:自动工作负载信息库 (AWR)。AWR 和数据库一起安装。数据库装好后,,快照由一个称为 MMON 的新的后台进程及其从进程自动地每小时采集一次(snap)
要查看当前的设置,您可以使用下面的语句:

select snap_interval, retention from dba_hist_wr_control;

SNAP_INTERVAL RETENTION
------------------- -------------------
+00000 01:00:00.0 +00007 00:00:00.0

这些 SQL 语句显示快照每小时采集一次,采集的数据保留 7 天。要修改设置 -- 例如,快照时间间隔为 20 分钟,保留时间为两天 -- 您可以发出以下命令。参数以分钟为单位。

begin dbms_workload_repository.modify_snapshot_settings ( interval => 20, retention => 2*24*60 ); end;

AWR 使用几个表来存储采集的统计数据,所有的表都存储在新的名称为 SYSAUX 的特定表空间中的 SYS 模式下,并且以 WRM$_* 和 WRH$_* 的格式命名。前一种类型存储元数据信息(如检查的数据库和采集的快照),后一种类型保存实际采集的统计历史数据。(H 代表"历史数据 (historical)"而 M 代表"元数据 (metadata)")

在这些表上构建了几种带前缀 DBA_HIST_ 的视图,这些视图可以用来编写您自己的性能诊断工具。视图的名称直接与表相关;例如,视图 DBA_HIST_SYSMETRIC_SUMMARY 是在WRH$_SYSMETRIC_SUMMARY 表上构建的。 AWR 历史表采集的信息比 Statspack 多许多,这些信息包括表空间使用率、文件系统使用率、甚至操作系统统计数据。这些表的完整的列表可以从数据字典中看到。

手工创建快照可以使用:

exec dbms_workload_repository.create_snapshot;

通过awrrpt脚本可以生成报告:
@?/rdbms/admin/awrrpt
生成报告,html和text格式都可以


Version 10.2
AWR Objects
Source{ORACLE_HOME}/rdbms/admin/dbmsawr.sql
First Availability10.1
Background ProcessMMON - Automatic data purging every 7 days by default
Constants
NameRetentionData TypeValue
MAX_INTERVAL100 yearsNUMBER52560000
MIN_INTERVAL10 minutesNUMBER10
MAX_RETENTION100 yearsNUMBER52560000
MIN_RETENTION1 dayNUMBER1440
Data TypesAWRRPT_TEXT_TYPE
AWRRPT_HTML_TYPE
AWRRPT_TEXT_TYPE_TABLE
AWRRPT_HTML_TYPE_TABLE
SYS AWRRPT_ROW_TYPE
Dependencies
dba_hist_baselinedba_hist_snapshot
--
awrrpt_html_typeplitblm
awrrpt_html_type_tablewrm$_baseline
awrrpt_text_typewrm$_snapshot
awrrpt_type_tablewrm$_snap_error
dbms_swrf_libwrm$_wr_control
dbms_swrf_report_internal
AWR_REPORT_HTML
Display the AWR report in HTMLdbms_workload_repository.awr_report_html(
l_dbid     IN NUMBER,
l_inst_num IN NUMBER,
l_bid      IN NUMBER,
l_eid      IN NUMBER,
l_options IN NUMBER DEFAULT 0)
RETURN awrrpt_text_type_table PIPELINED;

awrrpt_text_type_table is VARCHAR2(150)
See AWR Report demo linked at the bottom of the page
AWR_REPORT_TEXT
Display the AWR report in ASCII textdbms_workload_repository.awr_report_text(
l_dbid     IN NUMBER,
l_inst_num IN NUMBER,
l_bid      IN NUMBER,
l_eid      IN NUMBER,
l_options IN NUMBER DEFAULT 0)
RETURN awrrpt_text_type_table PIPELINED;

awrrpt_text_type_table is VARCHA

### 如何使用 Dify 创建 ChatFlow Dify 是一款强大的工具,支持 RAG 和 Chat 功能,并允许用户通过简单的配置来创建复杂的对话流 (ChatFlow)[^1]。以下是关于如何利用 Dify 来构建 ChatFlow 的详细说明。 #### 配置环境 在开始之前,确保已经安装并运行了 Dify 平台。如果尚未完成此操作,请参考官方文档或相关教程进行初始化设置[^2]。 #### 创建基础 Chat 流程 1. **启动新项目** 登录到 Dify 控制面板后,在界面中找到新建项目的选项,选择适合自己的模板或者手动建立空白项目用于自定义开发[^1]。 2. **集成大模型服务** 在 Dify 中可以通过简单几步实现与主流云端 AI 模型以及本地化部署的大规模预训练模型连接。这一步通常涉及 API 密钥输入或其他认证方式验证过程。 3. **设计交互逻辑** 使用图形化编辑器拖拽节点组件来搭建整个会话路径图谱。每个节点代表特定功能模块比如问候语句处理、问题分类解析等环节;边线则表示不同条件分支下的跳转关系。 4. **测试初步效果** 完成上述基本架构设定之后就可以立即试用看看实际表现情况怎么样啦!点击模拟按钮开启一轮虚拟客户交流体验吧~ 如果发现某些地方不够理想的话记得返回调整优化哦! #### 进阶定制化 当熟悉了基础框架运作原理以后还可以进一步探索更多高级特性: - 添加多媒体素材支持:除了纯文字形式外还能够嵌入图片链接地址甚至是实时音视频通话能力扩展; - 调整权重算法提升精准度:通过对历史数据的学习不断改进预测准确性从而让回复更加贴近真实需求场景; - 外部数据库联动查询:假如企业内部存在现成可用的数据源那么完全可以将其无缝融入进来作为补充参考资料来源之一。 ```python # 示例代码片段展示如何调用远程API接口获取动态更新内容填充至最终呈现给用户的答案部分当中去。 import requests def fetch_latest_news(topic): url = f"https://api.example.com/news?topic={topic}" response = requests.get(url) if response.status_code == 200: news_data = response.json() return news_data['articles'][0]['title'] else: return "Failed to retrieve the latest news." latest_headline = fetch_latest_news('technology') print(latest_headline) ``` 以上就是有关于怎样借助 Dify 工具平台快速高效地打造出属于自己的个性化聊天机器人解决方案的整体思路概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值