从PF-AFN_test开始看,先看测试代码
1.test.sh
python test.py --name demo --resize_or_crop None --batchSize 1 --gpu_ids 0
参数:name,resize_or_crop,gpu_ids 参数定义在options.base_options.py
定义:name demo
resize_or_crop None 不需要变换
batchSize 1一次把网络中送入一个
2.test.py
opt = TestOptions().parse()#opt代表初始化的类对象
ctrl+鼠标左键点击Testoptions,找到opt对象的具体内容:
class TestOptions(BaseOptions):
#TestOptions类的initialize函数系重写,但还是调用了BaseOptions.initialize(self)的,所以
#BaseOptions.initialize的数据也包含了的。
#根据训练和测试所需要的数据不同,控制生成数据集和其他超参数
def initialize(self):
BaseOptions.initialize(self)
......
ctrl+鼠标左键点击Baseoptions
import argparse #argparse指定命令行参数
import torch
#配置文件options,专用于数据集目录信息。测试信息和超参数进行配置的文件
class BaseOptions():
def __init__(self):... #创建对象就默认执行init方法,
def initialize(self):...
def parse(self, save=True):
'''
指定GPU
打印参数
'''
if not self.initialized:#self.initialized只要对象存在就执行init方法,init方法中self.initialized = False,if not False即为True
self.initialize()#执行initialize()方法
self.opt = self.parser.parse_args()#self.parser初始化的,.parse_args()获取参数的第一列'--name''--gpu_ids'
#把parser中设置的所有"add_argument"给返回到opt子类实例当中, 那么parser中增加的属性内容都会在opts实例中,使用即可。
self.opt.isTrain = self.isTrain # train or test 在opt对象中添加参数,把self.isTrain 赋值给self.opt.isTrain,但没有self.isTrain这个参数???
str_ids = self.opt.gpu_ids.split(',')#1,2,3在多GPU并行的时候,实际的batch size是单GPU设置的batch size的n倍
self.opt.gpu_ids = []
'''
指定GPU
'''
for str_id in str_ids:
id = int(str_id)
if id >= 0:
self.opt.gpu_ids.append(id)
if len(self.opt.gpu_ids) > 0:
torch.cuda.set_device(self.opt.gpu_ids[0])
args = vars(self.opt)
print('------------ Options -------------')#把参数打印一遍
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
return self.opt
opt = TestOptions().parse()#目的就是调用base_options中的方法,目的指定GPU,打印参数
数据集详细处理:
data_loader = CreateDataLoader(opt) #CreateDataLoader是封装数据迭代器的类 点进去
#pytorch怎么创建数据类:先把数据封装到一个dataset类里,该类的作用是把原来的图片和标签转换为tensor,dataset类再封装到dataloder类里,该类的作用把数据一批一批batch,3维转四4维
def CreateDataLoader(opt):
from data.custom_dataset_data_loader_test import CustomDatasetDataLoader
data_loader = CustomDatasetDataLoader()
print(data_loader.name())
data_loader.initialize(opt)
return data_loader
具体内容在CustomDatasetDataLoader在,ctrl+左键点进去
class CustomDatasetDataLoader(BaseDataLoader):#继承了BaseDataLoader类
def name(self):#返回类名
return 'CustomDatasetDataLoader'
def initialize(self, opt):
BaseDataLoader.initialize(self, opt)
#还封装了一层
self.dataset = CreateDataset(opt)#第一步,创建dataset类
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=opt.batchSize,
shuffle = False,
num_workers=int(opt.nThreads))
def load_data(self):
return self.dataloader
def __len__(self):
return min(len(self.dataset), self.opt.max_dataset_size)
发现还封装了一层,数据是:self.dataset = CreateDataset(opt)
#一般把图片加标签转成tensor数据
def CreateDataset(opt):
dataset = None
from aligned_dataset_test import AlignedDataset
#又有封装函数
dataset = AlignedDataset()
print("dataset [%s] was created" % (dataset.name()))
dataset.initialize(opt)#可以看出封装数据过程中动不动都在初始化
return dataset
<