【DataWhaleX科大讯飞】2024AI冬令营--5分钟创建第一个Agent!

【DataWhaleX科大讯飞】2024AI冬令营–5分钟创建第一个Agent!

Step1:注册支付宝百宝箱(点击打开官网)

链接:https://tbox.alipay.com/pro-about

1.点击体验专业版

1.点击体验专业版

2. 支付宝扫码登录

\2. 支付宝扫码登录

\3. 确认授权

4. 同意协议,开通产品

\4. 同意协议,开通产品

5.恭喜进入专业版界面

5.恭喜进入专业版界面

Step2:创建对话型应用

1.创建应用

1.创建应用

2.选择对话型应用并命名

2.选择对话型应用并命名

Step3:制作【万能文章生成助手应用】

1.简单填写agent能力并使用AI优化指令

1.简单填写agent能力并使用AI优化指令

2.应用AI优化的指令

2.应用AI优化的指令

点击了解用AI优化指令的价值

Step4:应用发布与配置

1. 点击【发布】

\1. 点击【发布】

2. 同意协议,确认发布

\2. 同意协议,确认发布

3. 开启web服务~

\3. 开启web服务~

Step5:在预览里快速体验

image-20241224214014152

AI Agent是什么?

AI Agent 是目前大模型应用领域的主流研究方向,其核心价值在于借助先进AI技术,打造出更加智能、更加自主的系统。

Agent不仅在处理复杂自然语言任务方面游刃有余,更在图像生成、数据分析、教育指导等多个前沿领域展现出卓越的应用潜力。

关于 AI Agent 框架的定义,目前最广为流传的版本出自 前OpenAI应用研究主管翁丽莲(Lilian Weng)的一篇blog: LLM Powered Autonomous Agents

Lilian Weng定义的Agent结构图

Lilian Weng定义的Agent结构图

在博客里,Lilian 将 Agents 定义为 LLM + memory + planning skills + tool use,即大语言模型、记忆、任务规划、工具使用的集合。

其中,LLM是Agent的大脑,属于“中枢”模型,要求有以下3种能力:

  1. planning skills:对问题进行拆解得到解决路径,既进行任务规划

  2. tool use:评估自己所需的工具,进行工具选择,并生成调用工具请求
    能力:

  3. planning skills:对问题进行拆解得到解决路径,既进行任务规划

  4. tool use:评估自己所需的工具,进行工具选择,并生成调用工具请求

  5. memory:短期记忆包括工具的返回值,已经完成的推理路径;长期记忆包括可访问的外部长期存储,例如知识库最早由不仅具备了感知、记忆和决策的全面能力,更能在复杂多变的环境中自主执行任务,并通过与外部工具的紧密协作,显著提升任务处理的效率与准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值