【DataWhaleX科大讯飞】2024AI冬令营–5分钟创建第一个Agent!
Step1:注册支付宝百宝箱(点击打开官网)
链接:https://tbox.alipay.com/pro-about
1.点击体验专业版
\2. 支付宝扫码登录
\3. 确认授权
\4. 同意协议,开通产品
5.恭喜进入专业版界面
Step2:创建对话型应用
1.创建应用
2.选择对话型应用并命名
Step3:制作【万能文章生成助手应用】
1.简单填写agent能力并使用AI优化指令
2.应用AI优化的指令
点击了解用AI优化指令的价值
Step4:应用发布与配置
\1. 点击【发布】
\2. 同意协议,确认发布
\3. 开启web服务~
Step5:在预览里快速体验
AI Agent是什么?
AI Agent 是目前大模型应用领域的主流研究方向,其核心价值在于借助先进AI技术,打造出更加智能、更加自主的系统。
Agent不仅在处理复杂自然语言任务方面游刃有余,更在图像生成、数据分析、教育指导等多个前沿领域展现出卓越的应用潜力。
关于 AI Agent 框架的定义,目前最广为流传的版本出自 前OpenAI应用研究主管翁丽莲(Lilian Weng)的一篇blog: LLM Powered Autonomous Agents,
Lilian Weng定义的Agent结构图
在博客里,Lilian 将 Agents 定义为 LLM + memory + planning skills + tool use,即大语言模型、记忆、任务规划、工具使用的集合。
其中,LLM是Agent的大脑,属于“中枢”模型,要求有以下3种能力:
-
planning skills:对问题进行拆解得到解决路径,既进行任务规划
-
tool use:评估自己所需的工具,进行工具选择,并生成调用工具请求
能力: -
planning skills:对问题进行拆解得到解决路径,既进行任务规划
-
tool use:评估自己所需的工具,进行工具选择,并生成调用工具请求
-
memory:短期记忆包括工具的返回值,已经完成的推理路径;长期记忆包括可访问的外部长期存储,例如知识库最早由不仅具备了感知、记忆和决策的全面能力,更能在复杂多变的环境中自主执行任务,并通过与外部工具的紧密协作,显著提升任务处理的效率与准确性。