ML—逻辑回归算法(MATLAB)

本文详细介绍了逻辑回归的基本概念及其三个核心要素:模型、策略和算法,并通过MATLAB代码实现了逻辑回归,同时对比了逻辑回归与感知机的学习过程及结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

华电北风吹

最后修改日期:2015/8/23


统计学习三要素方法=模型+策略+算法,对应于逻辑回归

模型=基于单极型函数(逻辑函数)的条件概率模型

策略=经验损失对应的训练样本后验概率最大化

算法=随机梯度上升法

逻辑回归MATLAB代码比较简单,如下所示,循环对所有的样本,进行梯度上升算法

function [w]=LogisticRegression(x,y,learningRate,maxEpoch)
% Logistic Regression
% x,y 一行为一个样本,y取值{0,1}
% 随机梯度法
[m,n]=size(x);
x=[ones(m,1) x];
w=zeros(1,n+1);
for epoch=1:maxEpoch
    for samlendex=1:m
        w=w+learningRate*(y(samlendex)-1/(1+exp(-x(samlendex,:)*w')))*x(samlendex,:);
    end
end

与先前的感知机比较,感知机代码http://blog.csdn.net/zhangzhengyi03539/article/details/46565739

把两个函数放在一个文件夹下使用下面的测试代码

clear;clc;
x=[3,3;4,3;1,1;];
y=[1,1,-1];
Pindex=find(y>0);
tIndex=1:length(y);
Nindex=setdiff(tIndex,Pindex);
plot(x(Pindex,1),x(Pindex,2),'*');
hold on;
plot(x(Nindex,1),x(Nindex,2),'p');

[w]=perceptionLearn(x,y,1,20);
xline=linspace(-2,5,20);
yline=-w(2)/w(3).*xline-w(1)/w(3);
plot(xline,yline,'r');

y=[1,1,0];
[w]=LogisticRegression(x,y,0.1,2000);
xline=linspace(-2,5,20);
yline=-w(2)/w(3).*xline-w(1)/w(3);
plot(xline,yline,'g');

legend('正样本','负样本','感知机','逻辑回归')


      即可得到结果


      一般情况下,逻辑回归结果要比感知机结果好,因为这个在策略比较中就可以看出来。感知机策略是让分错的样本与分类超平面距离越来越近,如果全部分类正确即停止。而逻辑回归策略是对于训练样本在基于二项分布的假设下取样概率最大。

      逻辑回归是对所有的样本点,但是一次只考虑一个(随机梯度下降法),对正样本和负样本根据不同的概率函数(如下图,正样本红线,负样本绿线),用随机梯度上升法优化w,使后验概率最大。


      对于分类超平面的位置与后验概率的关系:换句话说就是分类超平面在哪儿的时候,后验概率最大。以二维平面为例,在不考虑w范数的情况下,我们也可以把wx+b当作误分类点到分类超片面的距离,就会发现当分类正确的那些点都与分类超平面越远,分类错误的点都与分类超平面越近的时候,后验概率越大

     至于为什么采用单极型函数,参考关于广义线性模型的博文推导

      <^_^>


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值